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Abstract

We estimate a dynamic structural model to assess the long-term health

effects of demand-side cost-sharing. Using Eurostat regional data for 11 Euro-

pean countries (2008–2018), we track health transitions across cohorts defined

by age, gender, income, and region. Our model shows that increased out-of-

pocket payments reduce recovery rates, especially for low-income individuals.

The resulting loss in (quality-adjusted) life years is significantly larger than

what static estimates imply –up to twenty times higher for vulnerable groups.

These findings highlight the importance of accounting for long-term dynam-

ics in policy evaluation and underscore the unequal burden of cost-sharing on

population health.
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1 Introduction

Healthcare policy decisions often unfold over long time horizons, yet much of the em-

pirical evidence on health insurance reform focuses on short-run outcomes. In partic-

ular, studies of demand-side cost-sharing typically rely on difference-in-differences

(DiD) designs that estimate health effects over a narrow window around the im-

plementation of a policy. While these approaches yield credible short-run causal

estimates, they are less suited to capturing the cumulative, long-term consequences

of forgone care, especially when mortality is used as the outcome of interest.

This paper takes a dynamic approach to analyzing the health effects of cost-

sharing. We develop and estimate a structural model of health transitions, mortal-

ity, and insurance generosity using regional-level Eurostat data from 11 European

countries over the 2008–2018 period. Our framework follows cohorts by age, gender,

region, and income, distinguishing between individuals in high and low health states,

and modeling transitions using a Markov process. Importantly, we allow treatment

probabilities –and thus recovery rates– to depend on out-of-pocket spending and

unmet medical needs. This enables us to quantify both short- and long-run effects

of cost-sharing on mortality.

We show that increases in out-of-pocket costs lead to reductions in health, dis-

proportionately affecting low-income populations. Crucially, the dynamic effects are

an order of magnitude larger than static DiD estimates would suggest. Our results

highlight a key policy evaluation trade-off: methods that yield clean identification

in the short run may vastly understate the true long-run burden of cost-sharing,

particularly for the most vulnerable groups.

Our estimated model fits the data well and replicates a number of stylized facts.

Women have higher health status than men and people on high income higher than

people in poverty. The probability of falling ill increases with age. Although there

is uncertainty about the parameter estimates, there is an unambiguous ordering of

countries in terms of expected quality adjusted life years (qaly’s) for 45 year olds;

over the 2008-2018 period Switzerland has the highest expected qaly’s and Hungary,

Bulgaria and Lithuania the lowest.

We contribute to the literature on the health effects of demand-side cost-sharing

by emphasizing dynamic consequences and the disproportionate impact on low-

income individuals.

Several studies have established causal effects of health insurance on mortality

using individual-level U.S. data and policy variation from the Affordable Care Act
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(ACA). For instance, the Medicaid expansions have been shown to reduce mortality

using DiD approaches (Borgschulte and Vogler 2020; Miller, Johnson, and Wherry

2021). However, these studies focus on short-run effects –typically two to four years

post-reform– and do not capture long-run health dynamics.

Other studies also link higher out-of-pocket (oop) costs to reduced healthcare use

and higher mortality (Chandra, Flack, and Obermeyer 2021), but again only in a

static or within-year framework. Similarly, Goldin, Lurie, and McCubbin (2020) find

mortality effects in an RCT encouraging ACA compliance, but focus on a two-year

window and individuals aged 45–64.

Our contribution differs in three main ways. First, we use European data, where

insurance systems are more homogeneous and nearly universal –over 99% of the

population is typically covered (see the entry on Health insurance coverage with

Government/compulsory health insurance from the OECD Data Explorer). This

allows for a clearer link between policy variation and health outcomes at the popu-

lation level.

Second, we estimate a dynamic structural model tracking health status transi-

tions over time. This enables us to compare long-run effects of cost-sharing with

short-run DiD-style estimates. Our results show dynamic effects for low-income

groups are magnitudes larger than static ones. We illustrate this by using the es-

timation method in Finkelstein and McKnight (2008) to explain the difference in

detail.

Third, by using EU-SILC data on unmet medical needs, we explore a concrete

mechanism: individuals forgoing care due to cost, especially at low incomes. This

aligns with previous findings on liquidity constraints and care deferral (Gross, Lay-

ton, and Prinz 2020; Nyman 2003). While high-income individuals may also forgo

treatment, it is less driven by financial barriers (Brot-Goldberg et al. 2017; Chan-

dra, Flack, and Obermeyer 2021). Our results reflect this, showing much smaller

effects in that group.

The next section presents a dynamic model of health status and mortality. Then

we describe the Eurostat data that we use. We explain the empirical model that we

estimate. Estimation results are presented and we conclude with a discussion of the

policy implications. The appendix contains more details on our data and estimation.

The online appendix is the html version of this paper which includes –per section–

the python code that is used in each section’s analysis.1 This is an advantage of

1See the github repository: https://github.com/janboone/dynamic-effects-of-health-insurance-

reform.
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using data at the regional level. The repository contains the python code that gets

the data from Eurostat so that each step of this analysis can be replicated.

2 Theory

The idea of our dynamic model is to follow a cohort aged a at time t across calendar

years to age a+ 1 and year t+ 1. We capture this dynamic with a straightforward

Markov model. The model that we estimate is illustrated in Figure 1. We follow

individuals from age 45 to age 85. Let’s denote the age at which we start following

an individual by a = 0 at time t = 0. If this agent is healthy, there is a probability

π that the agent falls ill and moves to state ill at age a = 1 in period t = 1. With

probability 1 − π the agent stays healthy also at age a = 1. For an agent in the

unhealthy state, there is a probability σ that she is cured and becomes healthy at

age a = 1. With probability δ she dies and with probability 1− σ − δ she remains

in the unhealthy state at a = 1. Finally, death is an absorbing state.

Figure 1: Markov chain model

Instead of deriving the steady state outcome of the model, we estimate parame-

ters using the underlying difference equation. Focusing just on age for the moment

to ease notation, the model implies the following difference equation. Let ιa denote

the fraction of people aged a who are ill and 1 − ιa the fraction who are healthy,

then ιa evolves over age (and time) as:

ιa+1 = ((1− σ − δ)ιa + πa(1− ιa))/(1− διa) (1)

and διa people die at age a. In words, the fraction of people ill aged a + 1 equals

the fraction ill aged a who do neither recover to the healthy state nor die plus the

fraction of healthy people who fall ill. We normalize by 1 − διa to ensure that the

fractions ill and healthy add up to one.

We differentiate the fraction ill, ιa, by region/year/gender/income. If we add

all the sub/superscripts we get ιijatr for age a in year t and region r among gender

i ∈ {f,m} and low/high income j ∈ {l, h}. Let αtr denote the fraction of people

on low income in region r and year t which is available in our data. We observe in
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our data mortality µi
atr, the fraction of females/males i who die at age a in year t

in region r. In terms of our model this is given by

µi
atr = αtrδι

il
atr + (1− αtr)δι

ih
atr (2)

As we do not observe ι directly in our data, we have to estimate the starting

points of the fraction of people initially ill, ι0, in order to solve the difference equa-

tions over time. Our estimates of ι0 vary by age/gender/region/income. The reason

ι0 varies by age is illustrated in Table 1. Differentiated by gender/region/income we

follow the cohorts aged 45-74 over time until they are aged 55-84. The data section

below motivates this choice. Hence we estimate the initial values ι0 for the ages

45-74 in the year 2008. Then we apply equation (1) to determine the development

of ιa over time as cohorts get older.

Table 1: We follow cohorts aged 45-74 over time from 2008 until they are 55-84 in

2018.
year age

2008 45 46 47 48 . . . 68 69 70 71 72 73 74

2009 46 47 48 49 . . . 69 70 71 72 73 74 75

2010 47 48 49 50 . . . 70 71 72 73 74 75 76

2011 48 49 50 51 . . . 71 72 73 74 75 76 77

2012 49 50 51 52 . . . 72 73 74 75 76 77 78

2013 50 51 52 53 . . . 73 74 75 76 77 78 79

2014 51 52 53 54 . . . 74 75 76 77 78 79 80

2015 52 53 54 55 . . . 75 76 77 78 79 80 81

2016 53 54 55 56 . . . 76 77 78 79 80 81 82

2017 54 55 56 57 . . . 77 78 79 80 81 82 83

2018 55 56 57 58 . . . 78 79 80 81 82 83 84

The remainder of the section explains how π, δ, σ vary with age/year/gender/region/income.

First, the probability of falling ill π varies by age/gender/country/income. We know

that older people tend to be less healthy than young people, women tend to live

longer than men, longevity varies by country and people on low income tend to have

lower health status than people on high income. We allow π to vary along these

dimensions to capture these stylized facts.

Second, once people are in state “ill” we assume that their probability of death

δ is the same across age/gender/income. We do allow δc to vary by country as some
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healthcare systems may be better in prolonging life for the ill than systems in other

countries.

A final source of variation is the probability σ with which people recover to full

health. This probability σ is determined by the probability of treatment and the

quality of treatment conditional on being treated. We have data on unmet medical

needs. Reasons for unmet medical needs, that is reasons why people forgo treatment

include waiting lists, hospital too far away, afraid of treatment. The motivation that

we focus on is that the treatment is skipped because it is too expensive. Let υ ∈ [0, 1]

denote the fraction of people who have unmet medical needs. We write this as the

sum of the fraction of people who indicate that treatment is too expensive, τ , and

the fraction of people who give other reasons, υ0.

υ = υ0 + τ

We expect that τ is increasing in the fraction of healthcare expenditures that people

pay out-of-pocket, oop, where oop is measured as expenditure paid out-of-pocket

over total healthcare expenditure. We interpret this as capturing the generosity of

a country’s health insurance system. We use a linear approximation of this relation:

τ = ζoop

If healthcare is completely free at point-of-service, oop = 0 and τ = 0: with free

healthcare, no one forgoes treatment because it is too expensive. At the other

extreme, no health insurance at all: everything is paid out-of-pocket: oop = 1. Then

a fraction ζ ∈ [0, 1] will indicate they forgo treatment because it is too expensive.

We allow ζ to depend on income with ζ l ≥ ζh. We expect people on low income

to react more strongly to an increase in oop than people on high income. Also people

on low income are more likely to avoid treatment for other reasons: υl
0 ≥ uh

0 . To

illustrate, people on low income may be less skilled, say, in navigating waiting lists

or find it more difficult to travel to a hospital that is further away (or even abroad).

If someone gets treatment, the probability of recovering to full health is given

by λ. Hence, we write the probability of recovery σ as

σ = σ0 + λ(1− υ) (3)

where σ0 is the probability that someone recovers without treatment. The parameter

λ captures the quality of care which we allow to vary by region and year in ways

explained below.
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We consider two applications of our model. First, as a summary statistic of

health we calculate the expected quality adjusted life-years (qaly’s) of 45 year olds

till they are 85. We normalize the value of a life-year in full health to 1.0 and set

the qaly for a year being ill equal to θ ∈ ⟨0, 1]. The value of a “life-year when dead”

is normalized to 0.0. To make this qaly calculation, we keep track of the size of the

groups healthy and ill as follows:

Nhealthy
a+1 = (1− πa)N

healthy
a + σN ill

a

and

N ill
a+1 = πaN

healthy
a + (1− σ − δ)N ill

a

where we start with 45 year olds at a = 0 and calculate up to age A (corre-

sponding to 85 year olds). In contrast to equation (1) we do not normalize N ill
a +

Nhealthy
a = 1; indeed, the point is that we lose life-years as age increases. As above

Nhealthy
a , N ill

a , πa, σ, δ vary with gender/region/income.

We then calculate expected quality adjusted life-years from age 1 to A as the

undiscounted sum of qaly’s:2

Q =
A∑

a=1

Nhealthy
a + θN ill

a (4)

Second, we consider the effect on qaly’s of an increase in demand-side cost-

sharing ∆oop > 0. For this, we calculate qaly’s in the baseline outcome, Q0 and

compare it with the outcome where the fraction of people with unmet medical needs

increases with ∆υ = ζ∆oop. We denote the qaly’s in this outcome by Q1. The loss

of qaly’s due to increased demand-side cost-sharing is given by:

∆Q = Q0 −Q1

In words, suppose there was a reform in year t = 0 which increased oop. After the

reform we follow the cohort aged a = 0 over time till age a = A and calculate their

qaly’s, Q1. We compare these qaly’s with the counterfactual where oop was not

changed, Q0. We denote this the dynamic comparison.

We compare this dynamic analysis with the following static one. Instead of

following an age cohort over A calendar years, we consider A ages one period after

the reform and denote their qaly’s by Q̃1. That is, the equation for Q̃ is comparable

2We use an undiscounted sum here to make it easier to compare to the static version Q̃ discussed

below.
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to (4) except that in equation (4) both age a and calendar year t vary over the

summation. With Q̃ calendar year is fixed at t = 1 (with the reform happening in

calendar year t = 0). We then compare Q̃1 with the qaly’s these A age groups would

have received under the counterfactual where oop is unchanged, Q̃0.

To illustrate with Table 1: we start with ages 45-74 at t = 0. We have the reform

and calculate Q̃1 for the second row in the table (ages 46-75). Then we compare

this to qaly’s for the second row under the counterfactual of no change in oop. We

argue that this captures the estimate made by an event study like a DiD analysis,

say where the reform was introduced in one region but not in another region. The

DiD approach would then control for year fixed effects.

This type of analysis can identify the causal effect convincingly but is usually

applied for a couple of years only. For instance, because in later years the reform is

introduced in other regions as well. Or because over time other factors may change

causing a bias in the estimates based on the comparison of the regions.

Theoretically, it is plausible that the dynamic estimate exceeds the static one. In

a model where stocks (of healthy and ill) determine the state of the system and its

development over time, ignoring these dynamic effects is likely to cause an under-

estimation of the effect on qaly’s or mortality. With our estimated model we can

quantify the difference between the static and dynamic estimates.

3 Data

The data that we use is from Eurostat’s regional database and provides for NUTS 2

regions population size and number of deaths per age/gender category. In principle,

we have data on 11 countries and 65 regions for the 11 years 2008-2018 and ages

45-84 for women and men. The years 2008-2018 were chosen because, at the time

of the analysis, for most variables and regions data was available from 2008 onward

till 2018. The age range was chosen with the idea that mortality starts to increase

from 45 years onward and number of observations per region drop significantly from

age 85 onward. Finally, NUTS 2 regions were selected where there was at least one

observation for unmet medical needs over the years and where the number of deaths

during the year does not exceed the population size at the start of the year.

Table 2 shows the summary statistics for our variables. We briefly discuss the

main variables, the appendix provides more detail. We have more than 40k obser-

vations for population and deaths per age/gender/year/region category.3 We have

3The max. number of observations that we could have is: 65 (regions) ∗ 11 (years) ∗ 30 (ages)
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missing observations and explain below how we deal with these in our Bayesian

setting.

The average population size per region-age-gender category is about 6000 and

the average number of deaths 90. Median population size per category equals 5300

and median number of deaths 62. In our data, the percentage of people dying

in a NUTS 2/year/age/gender category (mortality) equals 2% on average with a

maximum of 17.3% for some region and age combination. The material deprivation

measure (denoted deprivation) comes from the EU statistics on income and living

conditions (EU-SILC) survey. It refers to the enforced inability to pay unexpected

expenses, afford adequate heating of the home, durable goods like a washing machine

etc. This variable captures the idea that people may feel forced to forgo (valuable)

treatment because it is too expensive.4 The mean deprivation rate across regions

and years equals 10%. Some regions have (almost) no people in deprivation, while

in others 55% of people live in deprivation. The median rate is around 3%.

Also from the EU-SILC survey, we use the variable capturing unmet medical

needs because the forgone treatment was too expensive (too exp). The variable

unmet measures percentage of people in need of healthcare that postpone or forgo

treatment because it is either too expensive, the hospital is too far away, there is

a waiting list for the treatment, the patient hopes that symptoms will disappear

without treatment, the patient is afraid of treatment or has no time to visit a physi-

cian. The mean fraction of people forgoing treatment because it is too expensive

equals 1.5%, while the mean fraction of people with unmet medical needs (because

it is too expensive or other reasons) equals 6.5%. In some regions the fraction of

people forgoing treatment because it is too expensive goes up to almost 20% and

the fraction of people with unmet medical needs to almost 30%.

For the model application considering the effect of demand-side cost-sharing on

health and mortality, healthcare quality could be a collider. Indeed, if government

resources are reduced, there could be both an increase in out-of-pocket payments

and a reduction in healthcare quality (by reducing investments in technology and/or

∗ 2 (genders) = 42, 900 which we have in first three rows. For the next 5 rows in the table we

have data for at max. 11 years and 65 regions which corresponds to 715 obervations and for

out-of-pocket we have at max. 11 years and 11 countries corresponding to 121.
4Eurostat also provides the variable “at-risk-of-poverty” per NUTS 2 region. This is a relative

poverty measure: the share of people with disposable income after social transfers below a threshold

based on the national median disposable income. But the link between this poverty measure

and forgoing treatment because it is too expensive is weaker. Further, there are more missing

observations for this variable than for the deprivation variable.

9

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:EU_statistics_on_income_and_living_conditions_(EU-SILC)


reducing the number of physicians). This reduction in quality would also affect

health and mortality thereby confounding the healthcare demand effect of out-of-

pocket spending. We use two variables to control for the quality of care. First,

infant mortality is a well known measure for the quality of a healthcare system.

Moreover, infant mortality is not directly related to our measure of mortality which

starts at age 45. On average there are almost four dead infants (younger than one

year of age at death) per 1000 live births. But for some regions this almost reaches

16 per 1000 live births. The second quality measure is the number of physicians

per 100k inhabitants. On average there are 380 physicians per 100k inhabitants

but this varies between regions from 180 to 800. We view this as an approximate

measure of resources available for healthcare in a region. Finally, we use the fraction

of healthcare expenditure paid out-of-pocket as a signal of how generous health

insurance is. This captures country wide policy. On average people pay a bit more

than 20% out-of-pocket but this varies from 12% in some countries to more than

40% in others.

Table 2: Summary statistics main variables

count mean std min median max

population 42900 5961.0 3788.7 574.0 5286.0 30491.0

deaths 42900 88.9 83.7 0 62.0 867.0

mortality (%) 42900 1.8 1.9 0 1.2 17.3

deprivation (%) 481 9.9 13.3 0 2.8 55.2

too expensive (%) 527 1.5 2.6 0 0.5 18.4

unmet (%) 527 6.4 4.6 0.7 5.1 28.1

infant mortality (‰) 705 3.8 2 0.8 3.4 15.8

physicians per 100k inhab. 594 379.4 108.6 180 363.3 807.9

out-of-pocket (%) 55 22.8 9.5 12.0 18.9 43.2

4 Estimation

We estimate the model using Bayesian methods. Here we present the equations of

the model. The online appendix contains the details on the choice of priors and the

pymc code of the model. Further, we explain how the Bayesian algorithm deals with

missing observations.

We present the model in reverse order. We observe the number of deaths m
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and the population size n per age/gender/region/year dimensions. We model the

probability of death µ and m has a Binomial distribution:

mi
atr = Binomial(ni

atr, µ
i
atr) (5)

where µi
atr is given by equation (2). Poverty αtr per region and time period is

observed in the data using the material deprivation measure discussed in the previous

section. The fraction of people ill ιijatr varies by age a, gender i, time t, region r and

income level j. This fraction ι follows from difference equation (1). Before we explain

how this equation is estimated, recall that the estimate of δc is allowed to vary by

country c.

To solve differential equation (1), we start by estimating the initial condition ιija0r

for ages a = 0− 30 (i.e. ages 45-74) in year t = 0 (2008) per region r, gender i and

income category j.

Next, we need to estimate the probability of falling ill πij
ar which we assume to

be additive in age, region, gender and income fixed effects in log-odds space. That

is we add together the log-odds effects for age, gender, region and income and apply

the inverse logit function ex/(1 + ex) to the sum of these log-odds. This gives the

probabilities πij
ar ∈ ⟨0, 1⟩.

The probability σ = σ0 + λ(1 − υ) of recovering to full health in equation (3)

is estimated as follows. We estimate the probability σ0 ∈ ⟨0, 1⟩ of recovering to

health without medical intervention. Further, we observe the fraction of people who

indicate that they have unmet medical needs υtr at the year/region level. For the ill

who do get treatment, 1− υ, there is a probability λ of full recovery. The logg-odds

of λ are the sum of three effects: (i) year fixed effects, capturing that over time the

quality of care improves due to technological progress, (ii) infant mortality and (iii)

number of physicians per 100k inhabitants. The latter two capture the variation

across time and region in quality of care. Again we use the inverse logit function to

turn the log-odds into a probability λ.

We expect both the probability of unmet medical needs because it is too ex-

pensive, τ , and for other reasons, υo, to be bigger for low incomes than for high

incomes. If your income is higher, you are less likely to skip a treatment because it

is too expensive: τ j = ζjoop with ζ l ≥ ζh and the fraction of medical expenditure

paid out-of-pocket ooptc varies with country and time. Further, also with the other

reasons for unmet medical needs (like waiting lists) we expect υl
o ≥ υh

o . Hence, we

find that

υtr = αtr(ζ
looptc + υl

otr) + (1− αtr)(ζ
hooptc + υh

otr)
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where we observe τtr = (αtrζ
l + (1− αtr)ζ

h)ooptc and υotr = αtrυ
l
otr + (1− αtr)υ

h
otr.

Hence we find

σj
tr = σ0 + λtr(1− ζjooptc − uj

otr)

Given that we estimate the initial conditions ι0 and the parameters πa, σ, δ we

can solve differential equation (1) to find ιiatr and thus calculate the probability of

death µi
atr in equation (2) as input in the Binomial distribution (5).

One of the conceptual advantages of a Bayesian model is that there is no clear

distinction between data and parameters. Both are basically distributions. This

comes to the fore when dealing with missing values which are prevalent in our data

as shown in Table 2. The Markov Chain Monte Carlo (MCMC) algorithm generates

the posterior distribution of parameters by drawing samples from this distribution.

For each parameter we will have 4 chains of 2000 draws, that is 8000 draws from the

posterior distribution. When an observation is missing, the algorithm will randomly

draw the observation from a pre-defined distribution. That is, treating the missing

observation as a parameter. This implies that each draw is different, signalling the

uncertainty that surrounds the missing observation. This is better than imputing

the value of the observation because the latter suggests that we are as certain about

the imputed value as we are about an observed value; which is obviously not the

case.

For variables based on summation, it is natural to assume a normal distribution

for missing observations. The expectation (standard deviation) of this distribution

is then given by the average value (standard deviation) of the observations that we

do have for this region or country.

To improve the efficiency of the algorithm in solving the difference equation

while estimating the parameters, the data is not in (two dimensional) dataframe

format. Instead we work with multi-dimensional tensors. To illustrate, the tensors

with the population and deaths data are 4-dimensional tensors with coordinates

age/gender/year/region. The difference equation then iterates over age and calendar

year using pytensor’s scan function. See the online appendix for details.

4.1 Identification strategy and limitations

Our identification strategy is grounded in a structural modeling approach rather

than exogenous quasi-experimental variation. We estimate a dynamic Markov model

of health status transitions using cohort-level Eurostat data, where the key policy

variable, oop, varies across countries and over time. We link these variations in
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cost-sharing to observed differences in recovery rates and mortality, conditional on

region, age, gender, income, time fixed effects and variables capturing healthcare

quality.

The strength of this approach lies in its ability to simulate long-run effects by

modeling underlying health dynamics. Unlike DiD estimators, which compare lim-

ited time points before and after a reform, our framework accumulates the effects of

delayed or forgone treatment over multiple years. It also allows us to examine het-

erogeneity by income and gender and to propagate parameter uncertainty through

Bayesian inference.

However, this comes with trade-offs. Our identification of the effects of cost-

sharing relies on structural assumptions, notably the specification of the Markov

transition probabilities. Further, oop variation is not derived from a policy discon-

tinuity or random assignment. As such, our estimates could be biased by omitted

variables that simultaneously influence health and insurance oop (e.g. austerity-

induced cuts to both healthcare quality and insurance generosity). We address this

concern through robustness checks: (i) the inclusion of unemployment and education

to capture lifestyle differences between regions and GDP per capita and imaging de-

vice availability as additional controls for healthcare quality and (ii) a placebo test

using traffic mortality which should not have the dynamic structure of mortality

that we analyse but can be negatively affected by fiscal austerity.

While these checks support the plausibility of our identification, we acknowledge

that the approach does not deliver the same level of internal validity as natural

experiments. Our findings should therefore be interpreted as credible simulations

under a structural model, rather than precise causal point estimates in the experi-

mental sense.

5 Results

In this section we present the results of the estimation of the model. Before pre-

senting the outcome of our estimation, we present some (graphical) checks of our

model.

5.1 Model fit

A first check of the model is to see whether it fits the data. Figure 2 shows for

all our observations the observed number of deaths on the horizontal axis and the
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predicted number on the vertical axis. Further, for each prediction we add a dashed

vertical line representing the 95% prediction interval (of the posterior predictive

distribution). The predictions clearly follow the 45-degree line and almost all 95%

prediction intervals intersect the 45-degree line. In this sense the model fit seems

quite good.

Figure 2: Observed vs predicted number of deaths (per age/gender/region/year)

together with 95% prediction intervals.

Figure 7 in the appendix presents the trace plots and Table 8 r-hat values for

estimated parameters. The r-hat values are close to one and the traceplots sat-

isfy the following three criteria. First, the plots in the right column of the figure

are stationary; that is, not trending upward or downward. This implies that the

posterior mean of the coefficient is (more or less) constant as we sample. Second,

there is good mixing which translates in condensed zig-zagging. In other words, the

algorithm manages to draw values across the whole domain of the posterior quickly

one after the other. Finally, the four chains cover the same regions. This is most

easily checked in the left column of the trace plot. The three features are satisfied

in the figure. All this indicates that the MCMC algorithm manages to sample the

posterior distribution correctly.

To gain an intuition on how the model works, Figure 3 shows a number of

estimated outcomes. The top-left panel shows the probability of falling ill, π, as a

function of age for women and men.5 This probability is quite low around age 45

5These probabilities are calculated by averaging πij
ar over region r and income j.
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and increases to 40% for men in their eighties. As shown in the panel below this

one, the probability of death –conditional on being ill– is above 10% per year. In

other words, falling ill in our model does not refer to a regular cough or breaking a

leg. The observation that the average probability of falling ill is higher for men than

for women is in line with the observation that women tend to live longer than men.

The 95% posterior probability interval shows that there is quite some variation in

the probability of falling ill at older ages but that uncertainty is small till age 75.

In order not to crowd the figure we do not report the 95% intervals for males but

they are of similar magnitude.

The top-right panel shows the country offsets (in log-odds terms) for four coun-

tries. There is a clear dichotomy between Switzerland and Norway on the one hand

and Lithuania and Hungary on the other. But even between these countries there is

hardly overlap between the distributions. Of these four countries, people in Switzer-

land are least likely to fall ill (at any age) and in Hungary most likely.

Similarly, the probability of dying conditional on being ill, δc, varies by country.

Of the four countries presented, it is lowest for Denmark and Finland and highest

for Hungary and Bulgaria.

Finally, the bottom-right panel shows the fraction of people ill for four categories:

people aged 55 and 60 with low/high income. The fraction of people who are ill is

higher for low than for high incomes, as one would expect. Also the fraction increases

with age. The posterior distributions for these fractions do not overlap.

5.2 Analysis

The analysis in this section makes the following points. First, the expected qaly’s for

a 45 year old vary a lot between countries and within countries between gender and

income categories. The concept of qaly’s is much discussed in the literature; here

we simply use it as a summary measure of the fractions of people in good health,

poor health and deceased. Second, when we increase demand-side cost-sharing by

ten percentage points (∆oop = 0.1), there is a clear but modest reduction in qaly’s.

Third, the effect is almost zero for people on high income but far higher for people

on low income. In this sense, effect heterogeneity is high and considering the average

effect (across incomes) is not informative. Finally, instead of comparing qaly’s lost

over, say, a thirty year time period (for which one needs a dynamic model), we can

compare the loss in qaly’s for the same age groups from one year before the increase

in oop to one year after. The latter is close to a (static) measure used in most event
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Figure 3: Summary of selected features of the model. Top left panel shows the age

profile for π for women and men. Top right panel shows the country offsetts in the

log-odds of π and bottom left panel the probability of death δc for selected countries.

Bottom right panel shows the fraction of two age groups who are in the low health

state for low and high incomes.

study analyses. We show that the dynamic effect is an order of magnitude bigger

than the estimated static effect.

Figure 4 summarizes the two applications that we analyse with the model. First,

since our estimation method identifies the fraction of people who have low health

status, we can derive qaly’s using equation (4). In the figure we use θ = 0.6: the

quality of life for someone who is ill (and has a 10% probability of dying per year)

is 60% of the quality of life for someone in full health. This is an arbitrary choice

and obviously different choices can be made here. Different values for θ change the

precise numerical values but not the main (qualitative) conclusions of the analysis;

as we show in the robustness analysis.

The figure was made as follows. For each group (female/male, low/high income)

of 45 year olds we create a population of 1000 individuals. At 45 we use our estimates

of ι0 to split the groups into low/high health status. With our estimated parameters

π, σ, δ we follow these individuals as they age over time till they are 85. Hence, for
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Figure 4: Summarizing two applications of the model: left panel shows the fraction

of the maximum qaly’s realized by country and the right panel shows qaly’s lost due

to 0.1 increase in oop.

each group there are at max. 40,000 life-years (in full health) to be had over this

period. For each subgroup gender/income we calculate the realized quality adjusted

life-years and divide this by 40,000. The left panel of Figure 4 shows the qaly’s

realized for low income men and for high income women. The panel shows that

in, say Switzerland, low income males get 80% of the max. number of qaly’s and

high income females get 10% of 40,000 qaly’s more. That is, the latter get 12.5%

(0.10/0.80) more qaly’s than the former. This gender/income gap ranges all the way

up to 20% in Hungary, Bulgaria and Lithuania.

The panel on the right shows what happens if oop is increased by 0.1: people pay

an additional 10% of their healthcare expenditure out-of-pocket for each country in

our data. It turns out that the average effect is around 3.0:6 among 1000 people, a

region/gender/income group loses 3 life-years for 45-85 year olds due to ∆oop = 0.1.

This effect is not huge but clearly bounded away from 0.

What is more surprising is the effect heterogeneity for high and low incomes.

The effect is almost ten times bigger for people on low income. People on high

income hardly react in terms of healthcare expenditure to the increase in oop as

they can afford it anyway. But for low incomes, the increase reduces their demand

for treatment. This raises unmet medical needs because it is too expensive and

hence, for this group, reduces the probability σ of recovering to the healthy state.

This has two effects on their qaly’s. First, the quality of life in the ill state is

6This overall effect is not reported separately in the figure.
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lower than in the healthy state. Second, staying longer in the ill state, increases the

probability of death (compared to being in the healthy state).

Finally, we compare the dynamic (across years) qaly effect derived above with a

year-on-year effect for the same ages. To avoid making additional assumptions we

do this for the ages 45-74 in the first row of Table 1. This is the cohort of ages that

we use to estimate the model. Hence we have a well defined ι0 fraction of people

that are ill per age/gender/region/income category in the year before the reform.

Then we use the equations for Q̃0, Q̃1 defined in the theory section to find the static

effect on qaly’s. We compare this to the dynamic estimate in equation (4) for the

same ages till A = 75.

Table 3: Dynamic vs. static estimates of qaly’s lost due to ∆oop = 0.1.

male female male female

estimate low income low income high income high income

Q0 −Q1 8.01 5.23 0.82 0.46

Q̃0 − Q̃1 0.31 0.24 0.12 0.06

As shown in Table 3, the dynamic low income estimates are lower than in Figure

4 (right panel): the dynamic estimates across ages till 75 are lower than over the

full range till 85.

Comparing static and dynamic estimates shows that for this type of health model

the dynamic estimates of qaly’s lost Q0 − Q1 are a factor twenty higher for low

incomes than the static estimates Q̃0 − Q̃1. For high incomes the factor is around

seven. As noted in section 2, we expect the dynamic effect to be bigger than the

static effect because the former takes the effect on the stock of ill/healthy into

account. However, the size of the difference is larger than one might have expected.

This suggests that for health models where an underlying (latent) health variable

is important, short-term estimates (as often with a DiD analysis) severely under-

estimate the overall effect of a policy change.

One can see the following trade-off. A DiD approach leads to a cleaner causal

identification. It often allows for a convincing way to keep other factors constant. In

contrast, identification in our model (which allows for a dynamic analysis) is based

on underlying theory but suffers from potential missing variable bias. We show that

for reasonable parameter values, the static estimate seriously under-estimates the

effect compared to a dynamic one taking account of the cumulative effects over a

life-time. In particular, we simulate the data using our dynamic model as true data

18



generating process. Then we use static estimators to see what effects they identify.

Figure 5 illustrates how a static estimate like DiD ignores the dynamics of health.

The figure is an abstract representation of the DiD estimate of Finkelstein and

McKnight (2008) analysing the introduction of Medicare in 1966 providing universal

public health insurance to individuals aged 65 and over. To find the health effect

of Medicare, the paper compares the average mortality rate of 65-74 year olds with

the rate for 55-64 year olds both before and after the introduction of Medicare; the

years 1952-1975.

The logic of comparing age category 55-64 with 65-74 is the underlying assump-

tion that the two categories do not differ except for the introduction of Medicare.

This assumption would be harder to motivate when comparing 55-64 with 82 year

olds. The idea of the paper is that if Medicare has substantial health effects one

expects that the mortality rate for 65-74 year olds falls compared to 55-64 year olds

after 1966. The paper does not find such an effect and the figure illustrates one

mechanism why this can be the case.

To place this analysis in the context of our paper, we simulate the effect of a

10% point increase in oop (∆oop = 0.1) in year 0 for people aged 65 and over.

Hence, in our model this implies that mortality will increase for the 65+ category

(not decrease as in the Medicare example). We can simulate both the reform and

the counterfactual and hence can make the comparison within age category. This

simplifies the analysis as there is no need to compare the effect to 55-64 year olds.

For this comparison between the DiD and dynamic estimates we only need the

estimated parameters to be reasonable, not perfectly accurate. As shown above,

this assumption seems to be satisfied with our estimated coefficients.

We do the simulations for low income men in one region in Bulgaria aged 65 and

above who face ∆oop = 0.1 in year 0. On the horizontal axis we plot age for this

group. The vertical axis shows the years after the introduction in year 0. The color

intensity of a point indicates the number of years an agent has faced this treatment

(higher oop). In the first year everyone aged 65 and above faced the higher out-of-

pocket for one year (bottom row in the figure). In the second year, people aged 66

and over faced this for two years and the 65 year olds only for one year etc.

The horizontal black line in the left panel indicates the comparison group used

in the paper (65-74) for year 10 (last year in the Finkelstein and McKnight (2008)

data). The figure illustrates how –from a dynamic point of view– the effect gets

diluted as the 65 year olds in this group have only experienced the reform for one

year, the 66 year olds for two years etc. for all years after the reform. In contrast
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the blue diagonal line gives the true dynamic effect when we follow 65 year olds in

year 0 till they become 83 with 19 years of increased oop. The diagonal includes

points with a darkness intensity that the horizontal line does not capture for any of

the years 0-18. In this sense, the static estimate under-estimates the true dynamic

effect.

The right panel shows the consequences of this. The vertical axis shows the

increase in mortality by age normalized on the average mortality effect for 65-74

year olds. Hence, the static estimate for 65-74 year olds in this figure is one by

construction. But due to the dynamics of health in our model, the effect is first

below 1 (till age 69) and then increases to six times the static estimate for 80 year

olds. In order to identify this (far bigger) effect, one has to estimate a dynamic model

capturing the age effects instead of relying on the DiD estimate. It will depend on the

application whether a static precise causal identification is preferable or an estimate

taking the dynamics of the problem into account but lacking a convincing causal

foundation.

Figure 5: DiD vs. dynamic estimates of a 10% point increase in out-of-pocket

expenditure for low income men aged 65 and over. The left panel shows the intensity

of the treatment across ages and years after the reform. The right panel shows the

effect when following the 65 year old cohort till they are 83.

6 Extensions

In this section, we present two robustness checks to validate our baseline results.

First, we assess potential confounding from broader macroeconomic conditions and

healthcare quality. As a placebo test, we examine whether oop payments predict

traffic mortality –a health outcome unlikely to be influenced by cost-sharing. Sec-
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ond, we augment the baseline model with GDP per capita. If the estimated effect

of the variable TooExp (unmet medical need due to cost) were to vanish with GDP

included, it would imply that cost-sharing is merely a proxy for recession-induced

fiscal constraints. In that case, higher mortality could stem from reduced healthcare

quality rather than forgone treatment. To further address this, we include an addi-

tional healthcare quality proxy –the number of imaging devices per capita– alongside

infant mortality and physician density. We also add education and unemployment

as variables capturing lifestyle choices in a region.

Next, we test the sensitivity of our results to the choice of θ, the relative value

of a life-year in poor health compared to full health, used in our qaly computations.

6.1 Data

For the extensions we use the variables in Table 4 in addition to the variables in Table

2. We have data on the number of people that die in traffic accidents. The unit is

number of deaths per 1 million inhabitants of the region. We have data on GDP per

capita (purchasing power standard) and the percentage of people unemployed in the

region. We have the percentage of people (aged 25-64) with tertiary education in the

region. We only have this from 2013 onward. Finally, we have data on the number

of devices for medical imaging (MRI’s, PET scanners etc.) per 100k inhabitants at

the country level.7

Table 4: Summary statistics variables for model extensions

count mean std min median max

traffic mortality per 1m inhab. 679 66.2 41 6 58 254

GDP per capita 629 23829.3 11335.1 6600 21300 59500

unemployment (%) 679 9.7 6.5 1.8 7.7 31.6

tertiary education (%) 378 31.4 9.9 16.4 31.4 54.7

number imaging devices per 100k inhab. 121 40.7 47 0 27.8 205.7

On average 66 people per 1 million inhabitants die in traffics accidents per year.

This ranges from six in one region/year combination to a maximum of 254 deaths.

GDP per capita is on average 24k but ranges per region from 6600 to almost 60k.

7For the first three variables we have eleven years of data for 65 regions which would mean 715

observations, but there are some missing values. Data on tertiary education only starts from 2013

and has max. 390 observations. Finally, for the imaging devices there are 121 observations and no

missing values.
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Unemployment is on average almost 10% and varies from less than 2% to more than

30%. Almost one third of the working population has tertiary education on average.

This varies from 16% to more than half of the population. Finally, the number of

imaging devises is on average 40 per 100k inhabitants but varies from no devices in

one year for a country to more than 200.

6.2 Extension of the model

In the extension of the model, we adjust two parameters of the baseline model. First,

in the equation for π we also include education and unemployment in the following

way:

πea1education+a2unemployment

That is, we multiply the expression for π in the baseline model by a multiplier

depending on education and unemployment. With more people having finished

tertiary education one may expect more healthy lifestyle choices. Unemployment

with the implication of lower income may lead to stress and/or worse lifestyle choices

as fresh vegetables, fruit and, say, a gym membership are expensive. With the

multiplier we capture that the effect of education and unemployment is small if

the probability of falling ill is small to start with, say at age 45. At age 60 when

the probability of falling ill is higher, the effect of unemployment and education is

higher.

Second, in the equation for the probability of recovery conditional on treatment,

λ, we add GDP per capita and the number of imaging devices as additional variables

capturing healthcare quality. These variables we add in the same way as infant

mortality and number of physicians in the baseline specification of λ.

With the estimated extended model we can do the same analysis as with the

baseline model. Our main result is that the dynamic estimates are an order of

magnitude higher than the static estimates. By comparing Tables 5 and 3 we see

that this result is robust to the addition of the variables. The mean values of qaly’s

lost for the different categories are similar for the base and extended models. To

illustrate that the differences in average qaly’s lost are not “significant”, Figure 6

shows the posterior distributions for qaly’s lost for the female, low income category.

Indeed, these distributions are almost the same for the base and extended models.

The same is true for the other gender/income categories.
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Table 5: Dynamic vs. static estimates of qaly’s lost due to ∆oop = 0.1 in the

extended model.
male female male female

estimate low income low income high income high income

Q0 −Q1 7.07 4.63 0.74 0.41

Q̃0 − Q̃1 0.28 0.23 0.11 0.05

Figure 6: Comparison of the posterior distribution of qaly’s lost for the base and

extended models

6.3 Placebo treatment

As a final check on our proposed causal mechanism, we add a placebo treatment.

Instead of analyzing mortality linked to health, we analyze mortality due to traf-

fic accidents. In the latter case there is neither the dynamic element of a health

stock developing over time nor a role for out-of-pocket expenditure causing forgone

treatments which may cause mortality. The details of the model are in the on-line

appendix.

The idea is that if out-of-pocket expenditure has a clear positive effect on traffic

mortality, an alternative causal mechanism presents itself: the government’s fiscal

space has narrowed (e.g. due to a recession) which simultaneously causes the gov-

ernment to increase demand-side cost-sharing and reduce investments in healthcare.

The reduction in these investments, reduces healthcare quality and this is the cause

of increased mortality. An increase in traffic accidents is then caused by reduced

investment in road safety.

We do not find such a clear relation between our oop variable and traffic mortality.

In particular, we find a posterior mean for the effect of oop on traffic mortality of

0.35 with a (posterior) standard deviation of 0.60 which is almost twice as high. This
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suggests that the path from an increase in oop to forgone treatments because they

are too expensive (for low incomes) to reduced health status and higher mortality

is plausible.

6.4 Different qaly values

When evaluating the effect of an increase in oop, we use θ = 0.6 in the qaly calcula-

tion –see equation (4). Table 6 illustrates that our main results are not sensitive to

this choice. The table reports qaly’s lost (due to ∆oop = 0.1) for θ = 0.3 and 0.8.

The middle rows reproduce Table 3 for ease of reference.

For each value of θ we see that the effects are far bigger for low than for high

incomes and the dynamic estimates are order of magnitude bigger than the static

ones. Further, part of the effect on qaly’s lost is –next to higher mortality– that

more people are in the low health state compared to the baseline situation with

lower oop. When higher weight θ is given to the low health state, the effect of ∆oop

is lower: the qaly penalty for being in the low state is reduced. Indeed, all entries

in the table fall with θ.

Although the size of the effect varies, the main results are robust to the choice

of θ.

Table 6: Dynamic vs. static estimates of qaly’s lost due to ∆oop = 0.1 for different

values of θ.
male female male female

θ estimate low income low income high income high income

0.3 Q0 −Q1 9.56 6.26 0.98 0.56

Q̃0 − Q̃1 0.48 0.39 0.18 0.09

0.6 Q0 −Q1 8.01 5.23 0.82 0.46

Q̃0 − Q̃1 0.31 0.24 0.12 0.06

0.8 Q0 −Q1 6.97 4.54 0.72 0.39

Q̃0 − Q̃1 0.20 0.16 0.07 0.04

7 Discussion and policy implications

This paper develops and estimates a dynamic structural model to assess the long-

term effects of health insurance generosity on population health. By modeling tran-

sitions between health states and mortality for cohorts defined by age, gender, in-
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come and region, we are able to simulate the cumulative impact of demand-side

cost-sharing on health outcomes mortality and quality-adjusted life years (qaly’s).

Our results yield two key insights. First, increases in the fraction of out-of-pocket

spending reduce population health, with particularly large effects for people on low-

income. Second, the magnitude of the long-term health cost is substantially greater

than what would be inferred from short-run, static estimates such as difference-in-

differences. For low-incomes dynamic effects are up to twenty times larger than their

static counterparts. Put differently, widely used methods for causal identification

deliver internally valid but incomplete assessments of health policy, particularly by

ignoring the dynamics of health stocks.

These findings have broader relevance beyond the context of healthcare. They

underscore the difficulties of evaluating policies whose outcomes develop gradually

over time –think of education reforms influencing human capital, climate policies

impacting environmental degradation and innovation policies shaping the accumula-

tion of knowledge. Our framework offers a template for incorporating such dynamic

effects into empirical work in these fields.

Future research can build on this work in several directions. Incorporating

individual-level microdata could help to refine the heterogeneity estimates and to

explore alternative functional forms for treatment response in the transition proba-

bilities. Further, gathering more data on healthcare quality and/or explicitly mod-

eling the government’s policy on demand-side cost-sharing in this framework can

reduce confounder bias.
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A Data

All our variables come from Eurostat. Table 7 shows the dimensions over which our

variables vary: country, NUTS 2, calendar year, age and sex. We also present the

DOI and a clickable link to the variable on the Eurostat website for ease of reference.

The file ./getting_data.org presents the code to download the Eurostat data.8

Table 7: Variables and the dimensions over which they vary.

variable country NUTS 2 time age sex DOI

population x x x x 10.2908/DEMO R D2JAN

deaths x x x x 10.2908/DEMO R MAGEC

deprivation x x 10.2908/TGS00104

too expensive x x 10.2908/HLTH SILC 08 R

unmet x x 10.2908/HLTH SILC 08 R

infant mortality x x 10.2908/DEMO R MINFIND

number of physicians x x 10.2908/HLTH RS PHYSREG

out-of-pocket x x 10.2908/HLTH SHA11 HF

traffic mortality x x 10.2908/TRAN R ACCI

GDP per capita x x 10.2908/NAMA 10R 2GDP

unemployment x x 10.2908/LFST R LFUR2GAN

tertiary education x x 10.2908/TGS00109

devices medical imaging x x 10.2908/HLTH RS MEDIM

The variables on deprivation and access to care (unmet and too expensive) come

from the EU statistics on income and living conditions (EU-SILC) survey.

From the Eurostat Glossary: “Material deprivation refers to a state of economic

strain and durables, defined as the enforced inability (rather than the choice not

to do so) to pay unexpected expenses, afford a one-week annual holiday away from

home, a meal involving meat, chicken or fish every second day, the adequate heating

of a dwelling, durable goods like a washing machine, colour television, telephone

or car, being confronted with payment arrears (mortgage or rent, utility bills, hire

purchase instalments or other loan payments).” Our variable “material deprivation”

equals the share of people in a NUTS 2 region in material deprivation.

Fraction of people with self-reported unmet needs for medical examination is

based on the same survey. In particular, the definition of this item is “Self-reported

8This file can be found in the github repository: https://github.com/janboone/dynamic-effects-

of-health-insurance-reform.
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unmet needs for health care: Proportion of people in need of health care reporting to

have experienced delay in getting health care in the previous 12 months for reasons

of financial barriers, long waiting lists, distance or transportation problems.” We

use both the general definition of unmet needs and the specific reason that treatment

was too expensive.

Infant mortality measures the number of deaths of infants per 1000 live births

in a year at the NUTS 2 region level.

We measure the number of physicians per 100k inhabitants per NUTS 2 region

and calendar year. It gives an idea of the resources spent on healthcare in a re-

gion. Together with infant mortality and unmet medical needs it gives an idea of

healthcare quality in a region.

We characterize how generous a health insurance system is using the variable

OOP in our analysis. This variable is derived from data on health care expendi-

ture by financing scheme at the country level. For our OOP measure we focus on

household out-of-pocket payment (out-of-pocket) as share of total current health

expenditure.

In the model extensions we also use GPD per capita and devices for medical

imaging as signals of healthcare quality. Unemployment and education capture

regional deviations from average health status across age and gender.

Finally, we use traffic mortality in our placebo treatment where changes in out-

of-pocket payments are not expected to change mortality.

B Estimation

Table 8 shows the details of the parameters in the model that do not have too many

indices. To illustrate we do not present the results for logodds age π as this would

entail 40 rows in the table.

The value of r hat is equal or close to one for all variables. This suggests that

the NUTS algorithm converged in drawing samples from the posterior distribution.

The probability of falling ill is clearly lower for women than for men. The increase

in the fraction of people forgoing treatment because it is too expensive, ζ, is higher

for low incomes than for high incomes. The ν parameter of the Beta distribution

is sometimes referred to as sample size. For the distribution of the fraction of

people reporting unmet medical needs due to reasons other than the treatment

being too expensive, νUo is above 100. For the fraction of people reporting unmet

medical needs (for any reason) νU is close to 300. The variable ε captures the
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extent to which unmet medical needs for other reasons than too expensive originates

with low incomes compared to high incomes. Although the posterior expectation

of ε is positive, zero is part of the 94% credibility interval. The uncertainty of

this parameter, including that ε equals zero, is propagated through our results and

simulated outcomes. Finally, λ1 equals the (negative) effect of healthcare quality

as measured by infant mortality on the log odds of λ, the probability of recovery

conditional on being treated. When measuring quality with the number of physicians

per 100k inhabitants, λ2 captures the effect on the log odds of λ.

log(λ/(1− λ)) = λ0 − λ1Minfant + λ2Nphysician

where λ0 varies by year to capture technical progress, Minfant measures infant mor-

tality and Nphysician the number of physicians. The table shows that λ1 is positive

in expectation but can be zero. For λ2 there is clearer evidence that the effect of

physicians on recovery is positive.

Table 8: Estimated parameters of the main model

mean sd hdi 3% hdi 97% ess bulk r hat

logodds sex π[F] -0.19 0.03 -0.25 -0.13 349.00 1.01

logodds sex π[M] 0.50 0.03 0.44 0.56 354.00 1.01

ζ[y l] 0.27 0.01 0.25 0.30 8429.00 1.00

ζ[y h] 0.03 0.00 0.03 0.04 6048.00 1.00

nu U 299.81 18.94 264.86 336.40 7950.00 1.00

nu U o 109.35 6.59 97.78 122.34 5584.00 1.00

ε 0.07 0.07 0.00 0.19 10331.00 1.00

lambda 1 0.01 0.01 0.00 0.02 6389.00 1.00

lambda 2 0.06 0.01 0.04 0.07 1704.00 1.01

Figure 7 shows the traceplots for the main parameters of the model. We check

the following three characteristics of the plots. First, the plot is stationary; that

is, not trending upward or downward. This implies that the posterior mean of the

coefficient is (more or less) constant as we sample. Second, there is good mixing

which translates in condensed zig-zagging. In other words, the algorithm manages

to draw values across the whole domain of the posterior quickly one after the other.

Finally, the four chains cover the same regions. All three features are satisfied for

the coefficients in the figure.
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Figure 7: Traceplot for the main model
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