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Abstract

The rationale for demand-side cost-sharing in health insurance is to de-

ter patients from using low value care. But if agents are cash constrained,

demand-side cost-sharing can lead them to postpone or forgo valuable treat-

ments. We use data on European (NUTS 2) regions to show that the interac-

tion between poverty rate and out-of-pocket payments leads to unmet medical

needs and higher mortality.
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1 Introduction

Most developed economies face rising healthcare expenditures. In many countries

the healthcare sector grows faster than the economy as a whole (OECD 2021). One of

the instruments that governments have to curb this expenditure growth is demand-

side cost-sharing. The effect of demand-side cost-sharing on healthcare utilization

is well known. As cost-sharing increases, healthcare becomes more expensive for the

individual and demand for treatments falls. It is less clear whether and to which

extent demand-side cost-sharing induces people to forgo low value care only (New-

house and the Insurance Experiment Group 1993; Schokkaert and van de Voorde

2011).

It is commonly believed that health insurance subsidizes health consumption,

incentivizing individuals to seek expensive treatments with limited health benefits.

Economists refer to this phenomenon as moral hazard. When considering the social

costs of such treatments, which exceed the individual’s out-of-pocket (oop) expen-

ditures, it is advantageous to reduce moral hazard through increased demand-side

cost-sharing. This trade-off involves balancing the efficiency gains resulting from

reduced moral hazard against the increased risk to risk-averse individuals stemming

from oop expenses.

This study aims to examine behavioral hazard, which occurs when cost-sharing

discourages patients from pursuing valuable treatments (Baicker, Mullainathan, and

Schwartzstein 2015). If patients choose to forgo treatments with higher value than

the associated costs, it results in a reduction of overall social welfare. Specifically,

we focus on situations where individuals opt out of or delay treatment due to its

high oop cost.

The objective of this paper is to develop a model that can be estimated using

aggregate data to assess negative health effects of demand-side cost-sharing. We are

particularly interested in examining how cost-sharing can make valuable treatments

unaffordable, thus reducing overall health outcomes. We begin by considering two

key ideas. First, if demand-side cost-sharing disproportionately affects individuals

with lower incomes, the reduction in access to valuable healthcare due to increased

costs will be more pronounced among this group. Higher income individuals, who

have sufficient resources, are more likely to pay for valuable treatments even if they

become costly in terms of oop expenses. Individuals with lower incomes may face

liquidity constraints that force them to postpone or forgo treatment. Second, if

there is a significant decline in demand for high-value care, we expect to observe
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this trend in mortality statistics at the aggregate level.

Figure 1: Mortality in NUTS 2 regions in Europe

To identify the health effects of cost-sharing we use mortality statistics of Eu-

rostat at the NUTS 2 (Nomenclature of Territorial Units for Statistics) regional

level. Figure 1 illustrates NUTS 2 regions used in this paper. Mortality varies by

region/year/age/sex. In regions where the percentage of people on low income is

high and demand-side cost-sharing is high, we expect to see high mortality. Since

we have panel data, we control for NUTS 2 (and hence country) fixed effects.

Despite the forthcoming analysis, we present a summarized overview of the re-

sults in Figure 2. Our analysis focuses on the NUTS 2 regions within each country

where poverty rates are highest, as these regions are likely to experience the strongest

impact at a regional level. Employing our estimated model, we simulate the effect of

a 500 euro increase in oop expenses on mortality rates. We express this effect as the

increase in deaths (attributable to the rise in oop) per 1000 deceased individuals.

We adopt this measure for two reasons. Firstly, mortality rates are –fortunately–

quite low, thus any alteration in oop expenses will have a relatively small impact
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on mortality. By reporting the increase in mortality per 1000 deceased individu-

als, we facilitate the interpretation of these numbers. Additionally, we present this

mortality measure for diseases that exhibit similar orders of magnitude, such as

pneumonia. Secondly, in our model, this measure per 1000 deceased individuals is

age-independent. In other words, the number of individuals dying from the increase

in oop expenses may vary across different age groups (as 25-year-olds are less likely

to die than 80-year-olds). However, the proportion of individuals dying as a result of

the oop expense increase, relative to the total number of deceased, remains constant

across age and gender. This approach allows us to reduce the number of parameters

requiring estimation and fits the data quite well.

The blue bars in the figure indicate the average simulated effect of the 500 euro

increase for each country’s respective region, while the black lines represent the

95% probability interval of the effect. It is worth noting that the four countries

with the highest poverty levels in our sample, namely Bulgaria, Greece, Hungary,

and Romania, exhibit the most substantial effects. For these countries, the 95%

probability interval of the effect is noticeably different from zero. Conversely, the

regions of the Scandinavian countries, Slovenia, and Switzerland demonstrate effects

close to zero at a regional level due to their very low poverty rates.

Figure 2: Increase in number of deaths per 1000 dead due to a 500 euro increase in

out-of-pocket payment for the region in each country where poverty is highest. Bars

present the average predicted effect and black lines the 95% prediction interval.
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The results suggest the following policy implications. An increase in oop has

a measurable effect on mortality in regions where poverty is high. Policies to ad-

dress this include a scheme that subsidizes healthcare expenditure (on top of health

insurance) for poor people; e.g. through means-tested cost-sharing. A downside

of such a targeted intervention is a higher marginal tax rate at low income levels

contributing to a poverty trap. Indeed, if by earning more, the oop subsidy falls,

the increase in net income is reduced. This makes such an increase in income less

attractive. Alternatively, a government can introduce co-payments that vary with

the cost-effectiveness of the treatment. Treatments with high value added would

then feature a low co-payment to prevent people from postponing valuable care.

This can also help to reduce mortality associated with cost-sharing (Chernew et al.

2008).

This study is not the first to examine the impact of demand-side cost-sharing on

mortality. There is a collection of recent studies employing innovative methodologies

and primarily relying on individual-level data to establish the causal effect of health

insurance on health and mortality. There are challenges associated with identify-

ing the effect of health insurance on health outcomes using individual-level data.

To illustrate, there is a selection bias where individuals with poorer health tend

to obtain more comprehensive health insurance due to higher anticipated medical

expenditures. This bias can distort results in a way that individuals with more ex-

tensive coverage may experience adverse health outcomes, such as higher mortality

rates.

Several studies have utilized the Medicaid eligibility expansion under the Afford-

able Care Act, which was implemented at various times across different states in the

US, enabling the implementation of a difference-in-differences identification strategy.

These studies have demonstrated that the Medicaid expansion (resulting in more

comprehensive health insurance coverage) has led to a reduction in mortality rates

(Borgschulte and Vogler 2020; Miller, Johnson, and Wherry 2021). Other analyses

focus on Medicare Part D prescription drug coverage, in which end-of-year pricing

displays non-linear patterns based on expenditure (Chandra, Flack, and Obermeyer

2021). The primary finding indicates that increases in oop costs for drugs result in

reduced drug use, including the use of high-value treatments, subsequently leading

to higher mortality rates. Goldin and colleagues conducted an experimental study

in which individuals subject to the Affordable Care Act’s health insurance mandate

were reminded of potential financial penalties for non-compliance. This reminder

prompted individuals to opt for health insurance instead of remaining uninsured,
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and as a result, mortality rates were lower among those who received the reminder

compared to the control group who did not (Goldin, Lurie, and McCubbin 2020).

Our paper adds to this evidence of negative health effects of demand-side cost-

sharing in the following way. First, we utilize European data instead of US data.

European countries tend to have a more homogeneous health insurance system com-

pared to the diverse range of options available within the US. In the US, individuals

may have employer-sponsored insurance, Medicaid or Medicare coverage, or no in-

surance at all, making it challenging to detect aggregate-level effects of changes

in, say Medicaid coverage. On the other hand, European countries tend to have

nationally determined health insurance features, resulting in a higher level of con-

sistency. For instance, the OECD Health Systems Characteristics Survey shows that

more than 90% of the population in European countries obtains primary healthcare

coverage through automatic or compulsory insurance, with percentages exceeding

99% or 100% in most cases. In contrast, the corresponding figure for the US is less

than one third. Therefore, country or region-wide statistics in Europe provide a

better representation of the insurance situation for most citizens compared to the

US, although they may not capture all individual nuances such as the purchase of

complementary insurance.

Second, our paper highlights the association between high mortality rates and

regions characterized by both high oop costs and poverty. This finding aligns with

previous research indicating that healthcare utilization is influenced by individuals’

liquidity constraints. Individuals with lower incomes tend to defer or forgo valuable

treatments when these are expensive (Gross, Layton, and Prinz 2020; Nyman 2003).

Our focus on low incomes may result in an underestimation of the mortality effect of

cost-sharing, as individuals with higher incomes may also forgo necessary treatments

due to oop expenses (Brot-Goldberg et al. 2017; Chandra, Flack, and Obermeyer

2021). However, in this case, the decision to forgo treatment is more likely driven

by factors other than liquidity issues.

Third, our study utilizes the regional structure of Eurostat data. We examine

the impact of the interaction between oop expenses and poverty on mortality within

specific age-gender groups at the NUTS 2 regional level. This approach helps ad-

dress potential endogeneity concerns. For example, a country with an overall low

health status may implement generous health insurance policies to improve pop-

ulation health. This direction of causality conflicts with our research focus. By

analyzing variations in health within regions in relation to oop costs and poverty,

while controlling for other factors using NUTS 2 fixed effects, we mitigate this is-
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sue. Moreover, examining health and mortality within each age cohort allows us

to account for variations in age distributions across countries and regions. Other

potential confounding effects when using regional data are discussed in a separate

section below.

Fourth, Eurostat variables derived from the EU-SILC survey enable us to con-

centrate on the relevant causal mechanism. The survey includes questions about

unmet medical needs in the past months and the reasons for these unmet needs.

One of the reasons cited is the cost, which leads individuals to postpone or forgo

treatment. This information allows us to simultaneously estimate the percentage of

individuals in a NUTS 2 region who forgo treatment due to cost and the effect of

unmet medical needs on mortality. Through this approach, we capture the relation-

ship between high interaction effects of oop costs and poverty, an increased number

of individuals postponing treatment due to cost, and higher regional mortality rates.

Finally, our paper distinguishes itself from the literature on the impact of in-

come and wealth on health that typically relies on cross-country data (Chetty et al.

2016; Mackenbach et al. 2008; Semyonov, Lewin-Epstein, and Maskileyson 2013).

This literature generally finds an association between lower income and wealth and

poorer health status, although the exact causal mechanism remains unclear (Cut-

ler, Lleras-Muney, and Vogl 2011). Two potential mechanisms have been proposed:

higher income leading to increased expenditure on treatments and consequently bet-

ter health, or healthier individuals having higher productivity and earning higher

incomes. Our approach, incorporating fixed effects and using survey questions on

unmet medical needs, allows us to focus on the mechanism where a high interaction

effect between oop costs and poverty leads to unmet medical needs, resulting in

poorer health status and higher mortality rates.

In summary, compared to studies utilizing individual-level data, our approach

provides both a broader overview –based on a number of countries, instead of, say

65 year old Medicare users in the US– and less precise estimation of the effect of

insurance generosity on mortality. Although we do interpret our results using the

size of the effect, our main goal is to establish that an increase in oop costs in a

poor region increases mortality. In particular, we quantify how sure we are that this

effect is positive.

The next section presents a model explaining the relationship between the vari-

ables mortality, poverty, oop expenditure and the fraction of people forgoing treat-

ment because it is too expensive. Then we describe the Eurostat data that we use.

We explain the empirical model that we estimate. Estimation results are presented
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for the baseline model and we show that these are robust with respect to a number

of our modeling choices. We conclude with a discussion of the policy implications.

The appendix contains the proofs of our results and more details on our data and

estimation. The online appendix is the html version of this paper which includes

–per section– the python code that is used in each section’s analysis.1 This is a final

advantage of using data at the regional level. The repository contains the python

code that gets the data from Eurostat so that each step of this analysis can be repli-

cated. The data used for this paper can be downloaded from DataverseNL (Boone

2022).

2 Theory

The relevant variables in our data are mortality per region/year/age/sex category,

the percentage of healthcare expenditure paid out-of-pocket (oop), the poverty rate

and the fraction of people per region postponing or forgoing treatment because it

is too expensive. We introduce a model to explain how these variables are related.

Then we discuss what variables are missing from the model potentially causing

confounding effects.

2.1 simple model

Consider a population (of a certain age and gender in a particular year) in an EU

region where a fraction α ∈ ⟨0, 1⟩ has low income yl and fraction 1−α high income

yh. We think of α as the poverty rate. Let πj denote the probability that someone

with income yj, j = l, h falls ill. As is well known, low income people tend to have

a lower health status (Cutler, Lleras-Muney, and Vogl 2011). We capture this by

assuming πl > πh. People on low income may have a less healthy diet, exercise less

etc. due to either the cost or knowledge of healthy lifestyle choices. This makes it

more likely that they fall ill. Thus we separate the direct health effect of income

(πl > πh) from treatment decisions made by people on low income.

Generally speaking, oop payments tend to take two forms that we want to cap-

ture: a coinsurance rate, which we denote ξ ∈ [0, 1], and a maximum expenditure,

which we denote D (for deductible). Some systems have a combination of the two.

Conditional on falling ill, there is a probability ζi ∈ [0, 1] that the patient is

1See the github repository: https://github.com/janboone/out_of_pocket_payments_and_

health.
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advised to get treatment i at cost xi for i in the set of “illnesses” I with
∑

i∈I ζi = 1.2

We define Iξ as the subset of I where ξxi < D and oopi = ξxi and set ID where

ξxi ≥ D and oopi = D. To keep things simple, we assume that ζi is exogenous

to the patient. We model the treatment decision on the extensive margin only: an

agent accepts or rejects the treatment proposed by a physician.3 A pure coinsurance

system has ξ < 1 and Iξ = I. A pure deductible system ξ = 1 and ID non-empty.

A combination of the two has ξ < 1 and there is a maximum on the oop payment.

Health insurance systems in Europe tend to have such maximum oop expenditure.4

An increase in either ξ or D is interpreted as making health insurance less generous.

Whereas with individual level data one can determine whether an individual

faces a positive treatment price at the margin (E.g. using the end-of-year price as

in Keeler, Newhouse, and Phelps 1977; Ellis 1986), this is not possible with the

aggregate data that we use here. Hence, we rely on an aggregate summary variable,

denoted OOP, measured as oop payments over total healthcare expenditure. That

is, the fraction of healthcare expenditure paid by patients oop. We interpret this

variable as capturing the generosity of the health insurance system. To illustrate, if

healthcare is free at point of service, OOP equals zero; if there is no health insurance

at all, OOP equals 1. In a pure coinsurance system with rate ξ applying to all

treatments, OOP equals ξ. It is the cap on oop expenditure (like a deductible) that

makes the relation between OOP and healthcare use non-linear. The challenge then

is to capture changes in ξ and D although we do not directly observe these variables

in the data. This is what the model sets out to do.

If an ill patient receives treatment, we denote her (expected) health σ, while

without treatment (expected) health equals σ0 with 0 < σ0 < σ < 1.5 Health is

normalized at value one for a patient who does not fall ill. The trade off between

health and oop is captured by σ0/σ < 1 and a simple assumption that utility is

multiplicative in health and consumption. That is, consumption yields higher utility

if you are healthier. To put it bluntly, if you are healthy and can travel, go skiing

etc. consumption yields higher utility than when you are ill, lying in bed all day.

2We think of I as encompassing treatment for every disease and combination of diseases.
3A further simplification is that we do not analyze dynamic incentives like: accepting this

treatment fills up my deductible which makes future treatment (weakly) cheaper for me.
4See question 12 in https://qdd.oecd.org/data/HSC specifying for most European countries

a spending cap.
5To ease notation we do not let σ and σ0 vary with i.
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We model the patient’s treatment decision as:

νσu(yj − oopi) > σ0u(y
j) (1)

where utility u(.) is determined by how much money can be spent on other goods:

income yj minus oop in case of treatment and yj if no treatment is chosen. The

utility function u(.) is increasing and concave in consumption: u(.), u′(.) > 0 and

u′′(.) < 0. Further, parameter ν captures other factors than pure financial ones

affecting a patient’s treatment choice.6 If the inequality holds, the patient accepts

treatment i.

In our data, we have a variable “unmet medical needs” based on a number of

motivations: treatment is too far away to travel to, there is a long waiting list,

the patient is scared to undergo treatment etc. To make our point, it is enough to

assume that such factors affect utility in a multiplicative way. To illustrate, if the

patient has to travel far for treatment, utility is reduced by multiplying it with a

value of ν < 1. Agents differ in ν and the cumulative distribution function of ν

is given by G(ν), its density function by g(ν). Other factors can include waiting

time till treatment, belief that the condition will resolve itself without intervention,

poor decision making e.g. with a focus on the short term thereby undervaluing the

benefit of treatment.

The probability that a patient with income yj accepts treatment i offered by a

physician equals

δji = 1−G

(
σ0

σ

u(yj)

u(yj − oopi)

)
that is, ν is big enough that inequality (1) holds. With probability G

(
σ0

σ
u(yj)

u(yj−oopi)

)
the patient decides to postpone or forgo treatment i.

The probability that a patient postpones or skips a treatment because it is too

expensive is given by

G

(
σ0

σ

u(yj)

u(yj − oopi)

)
−G

(σ0

σ

)
(2)

These are agents ν that would have chosen treatment i if it were free (oopi = 0

and u(yj)/u(yj − oopi) = 1) but who forgo treatment now that it costs oopi > 0.

The probability G(σ0/σ) captures factors like waiting lists or the patient hoping

that the health problems resolve themselves without treatment. That is, reasons for

postponing treatment not related to oop payments.

6Note that we do not model the decision to buy insurance. In Europe (almost) all citizens are

covered by automatic or mandatory insurance.
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In the proof of the lemma below, we show that the probability of accepting

treatment, δji , is increasing in income yj and decreasing in oopi, as one would expect.

Note that this model differs from a standard Rothschild and Stiglitz –R&S–

health insurance model (Rothschild and Stiglitz 1976) in the following way. In an

R&S model income plays no role and people with low health status have generous

insurance coverage. Hence, they would not postpone valuable care. In our model,

people with low health tend to have low income and may skip valuable treatment if

the oop expense is high. This negatively affects their health.

In Appendix A we specify how (unobserved) health and treatment decisions

translate into (observed) mortality for each age/gender class.

In our data, the variable Unmet varies with NUTS 2 region and year. In terms

of our model, we define this variable with subscript 2 for region and t for calendar

year as follows:

Unmet2t =
∑
i∈I

ζi(α2tπ
l(1− δlict) + (1− α2t)π

h(1− δhict)) (3)

with treatment probability δji for illness i ∈ I and income class j ∈ {l, h} varying

with country c and year t because oop varies with countries over time. In words, for

people on low [high] income –fraction $α2t [1-α2t]$– there is a probability ζiπ
l[ζiπ

h] of

falling ill with disease i where they forgo treatment with probability 1− δlict[1− δhict].

Further, in our data we have the variable OOP defined as oop payments as a

percentage of healthcare expenditure. In terms of our model, we write this –ignoring

subscripts– as

OOP =

∑
i∈I ζioopi(απ

lδli + (1− α)πhδhi )∑
i∈I ζixi(απlδli + (1− α)πhδhi )

(4)

where ζi(απ
lδli+(1−α)πhδhi ) denotes the fraction of people accepting treatment i. If

people do not accept treatment, there is no oop and no expenditure. The numerator

of OOP contains the oop payments oopi and the denominator expenditures xi. If

Iξ = I, it is clear that OOP = ξ. Because ID is non-empty (European countries

have a maximum oop payment), the expression for OOP is actually non-trivial. We

can also write OOP as the ratio of average oop per head and average healthcare

expenditure per head:

OOPct =
oopct
x̄ct

(5)

In our data these variables vary by country c and year t.

The following lemma summarizes the main results from the model and presents

the equations for mortality mag2t varying with age, gender, NUTS 2 region, calen-

dar year and the fraction of people forgoing treatment because it is too expensive,
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TooExp2t that we estimate below. Further, our simulation results are presented in

terms of the relative increase in deaths due to the increase in oop, dmag2t/mag2t. In

the lemma we use the following indices: age a, gender g ∈ {f,m}, country c, NUTS

2 region 2, calendar year t

Lemma 1 Healthcare demand δ = 1−G(.) is increasing in income yj and decreasing

in oopi (ξ or D).

We write the expression for mortality of age cohort a and gender g in NUTS 2

region 2 at time t as:

mag2t =
eβag

1 + eβag
e

(
µ2+γ ln

(
ma−1,g,2,t−1

m̄a−1,g

)
+βpovertyPoverty2t+βunmetUnmet2t

)

where βpoverty, βunmet > 0.

The linear expansion of TooExp with respect to OOP can be written as

TooExp2t = b0,2 + b0,t +OOPctx̄ct (boop,c + binteraction,cPoverty2t)

where boop,c, binteraction,c > 0.

Finally, the mortality effect of a 500 euro increase in oop can be written as:

dmag2t

mag2t

= βunmetTooExp2t(1− TooExp2t)500×

(boop,c + binteraction,cPoverty2t)

As derived in the appendix, mortality can be written as the multiplication of an

age/gender effect with a factor depending on the situation in the NUTS 2 region.

We think of the age/gender effect as biology that is the same across regions. This

is modeled as a sigmoid of age and gender fixed effects, βag, which makes sure the

probability of death is between 0 and 1. We multiply this baseline probability with

a multiplier capturing the other effects.

First, NUTS 2 region fixed effects, µ2, which capture regional variation in the

probability of falling ill. One can think of lifestyle habits that vary by region,

external factors affecting health like clean air, road safety, travel distance to closest

medical facilities that tend to be longer in rural areas etc.

Second, whether this age a cohort experienced a health shock in the previous

period t−1 when aged a−1. If there was such a negative health shock that increased

mortality, we expect that part of this shock spills over in the current period further

increasing mortality. We measure the health shock as mortality for this group in the
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previous period compared to average mortality for this group (across regions and

time).

Third, the region’s poverty level and the fraction of people with unmet medical

needs in the region in year t affect mortality. As shown in the proof of the lemma,

βpoverty = (πl − πh)(1 − σ) > 0: if there are no unmet needs, poverty still raises

mortality as poor people fall ill more often (πl−πh > 0) and treatment only partially

recovers their health (1 − σ > 0). This is the health effect of low income. Further,

βunmet = (σ − σ0) > 0: with unmet medical needs, patients end up with lower

health than they would have gotten with treatment (σ0 < σ). In words, we expect

mortality (in a region in year t) to be higher (for a given age/gender category) if

poverty is higher and there are more people with unmet medical needs.

If the sum of these three terms is negative, the multiplier is less than 1 and

mortality for this age/gender/region/year combination is reduced compared to the

baseline probability given by the sigmoid. If the sum of the terms is positive, mor-

tality for this observation is higher than the baseline probability.

For the second equation in the lemma, we use a linear expansion of TooExp

in terms of OOP. The appendix shows how we derive this relation using the policy

variables ξ and D which affect OOP and TooExp simultaneously. It turns out that

there is a direct effect of OOP on TooExp and an interaction effect with the fraction

of people below the poverty line in a region. We show that boop,c, binteraction,c > 0:

a region that lies in a country with high OOP tends to have high unmet needs (as

medical care is expensive) and especially so if the region features a high poverty

rate. On the other hand, if OOP equals 0 (healthcare is free at point-of-service) one

does not expect poverty to affect TooExp (it will still affect health and mortality

through lifestyle choices).

The third equation shows how a 500 euro increase in oop affects mortality for an

age/gender category in a NUTS 2 region in year t. In our simulations we present

this as the increase in mortality per 1000 deaths. The mortality effect of demand-

side cost-sharing goes via unmet medical needs. People fall ill and cannot afford the

treatments recommended to them by a physician. This reduces their health status

and affects the probability of dying.

As shown below, in our data TooExp is smaller than 0.5 in all regions. Hence, we

see that the mortality effect dm/m increases with the fraction of people that forgo

treatment because it is too expensive. This suggests the following non-linearity in

the effect of oop: if demand-side cost-sharing is initially low, TooExp is low and

an increase in oop hardly affects mortality, but in countries where oop is already
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significant and TooExp is high a further increase in oop has serious mortality con-

sequences. Finally, an increase in oop increases the fraction of people with unmet

medical needs because treatment is too expensive and especially so in regions where

poverty is high. The policy implications of this are clear: in a country where oop

is already high and where poverty is a serious problem, the government should be

careful increasing oop further.

Note that the increase in the number of deaths dmag2t/mag2t is independent of

age. This is due to our formulation of mortality where we have a baseline mortality

depending on age/gender only and a deviation from this baseline based on poverty

and unmet medical needs in the region.

2.2 confounding effects

The model sets the stage for the empirical analysis in two ways: (i) it helps us

specify functional forms, (ii) it helps us to avoid “causal salad” (McElreath 2020).

Because the model is clear on the mechanisms that are covered, we can also identify

potential mechanisms that are missing which can confound our estimates. This is

illustrated with a Directional Acyclic Graph, DAG (Pearl 2009; Hernán and Robins

2023). The arrow points from the node that has a causal effect to the node that is

affected.

Figure 3: DAG of the model (in blue and grey with solid arrows) and confounding

effects (in red, dashed arrows).

The grey nodes capture the model equation where poverty and OOP (and their

interaction which is not separately depicted in a DAG) affect the fraction of people

that forgo treatment because it is too expensive. The blue nodes capture the mor-
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tality equation where TooExp affects (because it is part of) people reporting unmet

medical needs, poverty affects health and previous period health (health -1) affects

today’s health. Finally, health determines mortality.

The DAG clearly shows two causal paths from poverty to mortality. First,

poverty is directly associated with lower health, say due to the financial stress in-

volved of living on low income and due to less healthy lifestyle choices, e.g. because

fresh fruit and vegetables tend to be expensive. Second, poverty makes it more

likely that people forgo valuable treatments leading to unmet medical needs; espe-

cially when OOP is high.

Some variables causing differences between regions that are more or less constant

over time –think of lifestyle (smoking habits), pollution in the region etc.– are not

explicitly mentioned in the DAG but are captured by region fixed effects in the

model.

Effects are potentially confounding if they differ between regions, vary over time

(not captured by fixed effects) and simultaneously affect both unmet needs and

mortality (in the mortality equation) or both TooExp and the interaction OOP ×
poverty (in the TooExp equation). In the robustness analysis, we focus on two

plausible mechanisms that can lead to these effects over time: shocks to healthcare

resources and to health itself.

First, consider a shock that reduces government resources available to finance

healthcare in the region or country. If this increases waiting lists due to reduced

healthcare capacity, Unmet is likely to rise. At the same time, this can also reduce

the quality of care, say because equipment maintenance is reduced, equipment is

replaced less often or due to wage cuts high quality physicians leave and are replaced

by lower quality staff. This reduction in care quality can affect health and mortality

introducing a different mechanism from the one we focus on; that is, we have a

causal path (indicated with dotted lines) via the red node healthcare quality that

goes outside the model.

Note that a shock to government resources which raises poverty (due to reduced

social assistance) and forces the government to raise out-of-pocket expenditure (say,

by raising the deductible) is not a confounding effect. Indeed, the model captures

that due to this shock the fraction of people that forgo treatment because it is too

expensive goes up. Further, this increase in TooExp raises the fraction of people

with unmet medical needs which will affect health and ultimately mortality. Unlike

the healthcare quality example above, here all causal paths are within the model

(going through gray and blue nodes).
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Second, a health shock (causing a higher fraction of people with bad health)

can increase both unmet medical needs (as more people fall ill, more people can

have unmet needs) and increase mortality. This is partly captured by previous year

mortality in the equation for mag2t in the lemma but in the current year this effect

is depicted by the dotted arrow from (red) bad health to unmet needs and mortality

(via health). This (current year) effect goes outside the model and can potentially

confound the effect that we find. In the same vein, a health shock can increase the

fraction of people that forgo medical treatment because it is too expensive and can

raise poverty through reduced productivity. Again this is a potentially confounding

effect outside of the model. Although our data do not include the Covid years, we

cannot exclude the possibility of other shocks that tend to either reduce health and

raise mortality or increase poverty and the fraction of people forgoing treatment

because it is too expensive.

In the robustness section we introduce variables to control for these potentially

confounding healthcare quality and health effects. Then we compare our baseline

estimate of the OOP effect with the effect that follows from these equations with an

extended variable set.

3 Data

The data that we use is from Eurostat’s regional database and provides for NUTS 2

regions population size and number of deaths per age-gender category. In principle,

we have data on 14 countries and 78 regions for the years 2009-2019, ages 35-85

for women and men. The years 2009-2019 were chosen because, at the time of the

analysis, data on poverty was available from 2009 onward and data on the number

of deaths ran till 2019. Further, we want to exclude the corona years which were

exceptional in terms of mortality. We start at age 35 because at ages below 35,

mortality is so low that there is hardly a difference between mortality in regions

with different poverty levels (see Figure 4 below). For ages above 85 population

numbers per region get rather low.

We drop NUTS 2 region-year combinations where for an age-gender category

–due to reporting issues or people moving– the number of deaths in a year exceeds

the population size at the start of the year. We focus on observations where we have

complete records on mortality, the fraction of people indicating they postponed

treatment because it was too expensive and oop expenditure.

Table 1 shows the summary statistics for our variables. We briefly discuss the
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main variables, the appendix provides more detail. We have more than 50k obser-

vations.7 The average population size per region-age-gender category is about 7500

and the average number of deaths 100. Median population size per category equals

6500 and median number of deaths 56. In our data, the percentage of people dying

in a NUTS 2/year/age/gender category (mortality) equals 2% on average with a

maximum of 20% for some region and age combination.

Table 1: Summary statistics main variables

count mean std min median max

population 52612 7491.3 4805.3 440 6477 36117

deaths 52612 103.2 126.5 0 56 1033

mortality (%) 52612 2.1 2.9 0 0.8 20.7

poverty (%) 50878 16.5 6.6 2.6 15.3 36.1

deprivation (%) 52612 11.2 12.8 0 3.4 52.3

too exp. (%) 52612 2 3.1 0 0.6 16

unmet (%) 52612 5.8 4.1 0 4.8 20.9

out-of-pocket (%) 52612 22 8.9 8.8 19.5 47.7

voluntary (%) 52612 3.1 3.1 0.3 1.6 15.2

expend. per head 52612 3386.6 2691.3 307.7 3559.5 8484.9

infant mortality (�) 52612 4.3 2.3 0.8 3.6 11.6

bad health (%) 52612 12.8 12.2 0.8 8.3 78.9

We use two measures for poverty; each of these measures comes from the EU

statistics on income and living conditions (EU-SILC) survey. The first is “at-risk-

of-poverty rate” that we refer to as poverty. This is a relative poverty measure:

the share of people with disposable income after social transfers below a threshold

based on the national median disposable income. The material deprivation measure

(denoted deprivation) refers to the enforced inability to pay unexpected expenses,

afford adequate heating of the home, durable goods like a washing machine etc.

In our data, the (unweighted) average (across regions and years) percentage

of people at risk of poverty equals 16% with a maximum of 36%. For material

deprivation the numbers are 11% and 52%. These measures vary by NUTS 2 region

and year but not by age or gender. We use deprivation in our baseline analysis

7A rough estimate of the max. number of observations that we could have is: 78 (regions) ∗ 10

(years) ∗ 50 (ages) ∗ 2 (genders) = 78k. Missing observations on some of the key variables reduces

this to 50k.
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because it captures more closely the idea of postponing treatment due to financial

constraints. The poverty variable is used in a robustness check.

Also from the EU-SILC survey, we use the variable capturing unmet medical

needs because the forgone treatment was too expensive (too exp). The variable

unmet measures percentage of people in need of healthcare that postpone or forgo

treatment because it is either too expensive, the hospital is too far away, there is

a waiting list for the treatment, the patient hopes that symptoms will disappear

without treatment, the patient is afraid of treatment or has no time to visit a

physician. As explained in the model above, our analysis uses both too exp and

unmet (which includes too exp as reason for unmet medical needs) as variables.

The measure OOP that we use in the baseline model, is based on household

oop payments (out-of-pocket). In particular, this measures the percentage of

healthcare expenditures paid oop. This varies by country and year. The higher

OOP, the less generous the healthcare system is (in terms of higher coinsurance ξ or

deductibleD in the model above). We expect that high OOP is especially problematic

in regions with a high percentage of people with low income.

In a robustness analysis we consider the sum of oop and payments to voluntary

health insurance (voluntary) as a percentage of health expenditures as our OOP

measure. The reason why we also consider voluntary insurance is that basic or

mandatory insurance packages can differ between countries. If people are willing

to spend money on voluntary insurance, it can be the case that this voluntary

insurance covers treatments that people deem to be important. Put differently, a

country that finances all expenditure (“free at point of service”) for a very narrow set

of treatments would appear generous if we only used oop payments. The narrowness

of this insurance would then be signalled by people buying voluntary insurance to

cover other treatments.

As can be seen in Table 1, out-of-pocket is the most important component of

the two OOP inputs. Percentage of healthcare expenditure paid oop is a multiple of

the percentage financed via voluntary insurance (both in terms of the mean and of

the minimum, median and maximum reported in the table). Therefore, the baseline

model works with oop payments (only).

As shown in Lemma 1, healthcare expenditure per head x̄ct (expend per head)

affects how OOP influences the fraction of people forgoing treatment because it is too

expensive. Expenditure per head is on average 3300 euro for the countries in our

data. But the variation is big with a standard deviation of almost 2700 euro.

The last two variables are used in our analysis of confounding effects. Infant mor-
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tality is a well known measure of population health and healthcare quality (Health at

a Glance 2023: OECD Indicators 2023). In contrast to measures like treatable and

preventable mortality, infant mortality is not directly correlated with our mortality

measure which considers people above age 35. If there is a negative shock in a year

reducing the quality of care, we expect infant mortality to pick this up. It is defined

as the number of deaths of infants (younger than one year of age at death) per 1000

live births in a given year.

Finally, bad health gives the percentage of people who answer bad or very bad

when asked about their health status in the EU-SILC survey. Around 12% report

self-perceived bad or very bad health and this ranges from less than 1% in some

regions to almost 80% in others. This variable is used to control for health shocks

over time as potential confounding effects. If healthcare quality deteriorates one

would also expect more people indicating lower health status.

Figure 4 (left panel) shows average mortality as a function of age for women and

men. This is the pattern that one would expect: clearly increasing with age from

age 40 onward and higher for men than for women (as women tend to live longer

than men). Figure 4 (middle panel) shows the effect we are interested in: mortality

is higher in regions where the interaction OOP × Poverty is high than where it is low

and this difference increases with age.

Both for women and for men, we plot per age category the difference between

average mortality in regions that are at least 0.5 standard deviation above the mean

for OOP × Poverty and regions that are at least 0.5 standard deviation below the

mean. Around age 82, this mortality difference equals approximately 4 percentage

points. In the raw data, for 100 (wo)men aged 82, there are 4 additional deaths

in regions with high interaction OOP × Poverty compared to regions with low in-

teraction. Note that this plot of the raw data does not correct for other factors,

like the poverty level itself, and thus over-estimates the effect of OOP × Poverty on

mortality. The right panel in this figure does a similar exercise with the fraction of

people reporting unmet medical needs. Mortality is higher in regions where unmet

needs are at least 0.5 standard deviation above the mean compared to regions where

it is 0.5 standard deviation below the mean.

The observation from the figure that the difference between the two sets of

regions is approximately zero for people below 35, is our motivation to include

ages above 35 only in our data. Further, the difference in mortality between the

regions increases with the mortality level in the left panel. This is in line with

our specification in Lemma 1 where unmet needs has a multiplicative effect on the
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underlying (biological) mortality rate modeled by eβag/(1 + eβag).

Figure 4: Mortality and difference in mortality between regions with high and low

interaction OOP × Poverty and high and low unmet medical needs.

4 Estimation

In this section, we explain how we estimate the mortality and TooExp equations in

Lemma 1.

4.1 Empirical model

The first equation estimates a binomial model with population size as the number

of draws and deaths as the number of events. We do this for every combination of

age, gender, NUTS 2 region and calendar year in our data. The probability of k ≤ n

deaths out of a population n is then given by(
n

k

)
mk(1−m)n−k

where m denotes mortality: the probability of death. The equation that we estimate

for mortality mag2t is given in the lemma above. The coefficient we are especially

interested in is βunmet. This is the coefficient through which an increase in unmet

medical needs because of financial problems affects mortality.

Figure 4 illustrates that without the multiplicative specification for mag2t in the

lemma, the coefficients for βunmet, βpoverty would have to vary with age. Indeed, for

the young mortality is low even in regions with high poverty or high unmet needs.

Specifying coefficients that vary with age would considerably increase the number

of parameters that we need to estimate.
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The second equation captures how an increase in OOP affects the fraction of people

in a region that postpone or skip treatment because it is too expensive. This fraction

TooExp is based on (EU-SILC) survey data where we do not know the number of

people interviewed. Hence, we cannot model this as a binomial distribution. In

our estimation we want to ensure that TooExp is between 0 and 1. For this we

assume that TooExp in the lemma above has a logit-normal distribution. That is,

the log-odds of TooExp is normally distributed.

Details of the estimation can be found in Appendix C.1 and the python code is

in the online appendix.

4.2 Bayesian estimation

We use Markov Chain Monte Carlo (MCMC), in particular the NUTS sampler to

explore the posterior distributions of our parameters. For this sampler, we have the

guarantee that the whole posterior distribution is captured as long as we have enough

samples. Although this is an asymptotic result, we are confident that drawing four

chains of 2000 samples (1000 samples of which are used for tuning) is enough to

cover the posterior distribution. In the appendix we discuss a number of checks on

this convergence.

It is not straightforward to put priors on the coefficients of the two equations in

Lemma 1. To illustrate, how strong is the reaction of mortality to a 0.1 increase in

the fraction of people reporting unmet medical needs? We are not aware of previous

studies looking into this and have no a priori information on the strength of this

effect. We use three principles when setting priors. First, we use regularizing priors

(“seat belt priors”): priors close to zero with small standard deviations. Hence, a

coefficient differs from zero only if there is clear evidence for this in the data. This

reduces the risk of over-fitting. Second, we use a hierarchical model to determine

the parameters of the prior distributions. Finally, if the theory suggests a parameter

is positive, the prior distribution reflects this (e.g. using a half-normal instead of a

normal distribution). Details on the priors can be found in the appendix.

As it is hard to judge how sensible a prior for one particular coefficient is, the

online appendix to this section shows the prior predictive distributions. That is,

the predictions for mortality and TooExp that the model generates without having

seen the data. Comparing the prior predictive distributions with the observed dis-

tributions, we show that our priors do not exclude relevant possible outcomes nor

do they put (much) weight on unlikely outcomes (say, mortality close to 0.9).
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Finally, as shown in Table 1, we have fewer observations for poverty than for

deprivation. But in the robustness analysis where we use the variable poverty we

do not want to change the sample. Appendix C.2 explains how Bayesian estimation

deals with missing values without imputation or dropping observations.

5 Results

In this section we present the results of the estimation of the baseline model. Before

presenting the outcome of our estimation, we present two graphical checks of our

model.

5.1 model fit

Figure 5 gives an idea of the fit of the model in terms of predicting deaths per

age/gender/region/year category and the fraction of people postponing treatment

because it is too expensive.

The left panel shows observed number of deaths per category on the horizontal

axis and the posterior predictive for this on the vertical axis. For each row in our

data, we have observed number of deaths and a distribution of predictions of this

number. In the figure, we show the average prediction of deaths across the posterior

samples. The predictions are not perfect but do follow the 45-degree line closely.

The right panel shows the (log odds of the) fraction of people per region/year

indicating they went without treatment (for a while) because it was too expensive.

The difference between this panel compared to the one on the left is that this fraction

does not vary by gender and age. Hence, we do not have a prediction for each “row

in our data”. The right panel shows the observed and predicted fraction for TooExp

per region/year. The dots indicate the average posterior prediction of this log-odds

ratio. For small observed values of TooExp (log-odds below −5 in the figure) there

is a range of predicted values. Although this range seems wide in log-odds space,

both the observed and predicted values are equal to zero. To illustrate, for practical

purposes it does not matter if a probability equals 0.0001 (log-odds of −9) or 0.002

(log-odds of −6): both values are basically zero. Moreover, given our log-odds

specification, the model cannot predict an exact zero probability.

A related observation is that in the data TooExp equals 0 for a number of re-

gion/year combinations. To handle this numerically, we use a lower bound for the

log-odds. This corresponds to a probability of 0.0001 which is close enough to zero
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for our purposes. The right panel shows this bunching for a number of observations

slightly below −9. The bunching for other values of observed log-odds between −5

and −7 corresponds to regions reporting rounded fractions of 0.001, 0.002 etc.

Compared to the observed number of deaths, the predictions for TooExp seem

less accurate. This is to be expected as there are (a lot) fewer observations for this

variable compared to mortality. But all in all the fit does not seem unreasonable as

the points cluster around the 45-degree line.

Figure 5: Fit of estimated and observed mortality across all observations and ob-

served and predicted fraction of people indicating TooExp across NUTS 2 regions.

Another way to check how well the model fits, is to see how well it captures the

age profile of mortality. This we present in Figure 6. The left panel shows the age

profile eβag/(1+eβag). If the other terms in equation (7) equal 0, eβag/(1+eβag) gives

the probability of death for age/gender category ag. The right panel includes for

every region and calendar year the correction on eβag/(1 + eβag) to yield mortality

for that combination of age/gender/region/year. On average, the model captures

the age profile perfectly.

The appendix presents two further checks of the model. Figure 11 shows the trace

plots for the parameters of interest. The figures in the left panel show the posterior

distribution of the parameters. The coefficients b oop, b interaction vary by

country and hence we have different colors for the country specific distributions in

these graphs. The beta parameters do not vary with country (or another index)

and hence there is one color only. In the beta figures it is easy to see that there
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Figure 6: Fit of average mortality by age

are four distributions per parameter. These correspond to the four chains that are

sampled by the NUTS algorithm.

The right panels show the same samples but now ordered across the horizontal

axis as they were drawn. We check these plots for the following three features.

First, the plot should be stationary; that is, not trending upward or downward.

This implies that the posterior mean of the coefficient is (more or less) constant

as we sample. Second, there should be good mixing which translates in condensed

zig-zagging. In other words, the algorithm manages to draw values across the whole

domain of the posterior quickly one after the other. Finally, the four chains cover

the same regions. All three features are satisfied for the coefficients in the right

panel of the figure.

Another check on the convergence of the algorithm are the r-hat values in Table 5

in the appendix. This table summarizes the posterior distribution for the slopes that

we are interested in. It provides the mean and standard deviation for each of these

parameters, the 95% probability/credibility intervals and the number of effective

samples for each parameter. As the number of these effective samples (ess bulk

column) is roughly above 500 for all and above 1000 for most parameters, this looks

fine. The final column presents the values for r-hat for each parameter. Since these

are all equal (close) to one, we can be confident that the NUTS algorithm converged

for these parameters.
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5.2 size of effects

Table 5 in the appendix presents the posterior values for each of the parameters.

Here we focus on the effect we are interested in: what is the increase in mortality

due to an increase in oop? Lemma 1 shows the effect dm/m of a 500 euro increase

in oop. Figure 2 reports the expression in this equation multiplied by 1000. That

is, we report the increase in deaths due to the oop increase per 1000 deaths. Note

that the 500 euro change in OOP enters multiplicatively. In other words, dividing

the effect in Figure 2 by ten gives the effect of a 50 euro increase in OOP for each

country. In this sense, the choice of 500 euro is a matter of presentation.8

As the expression for dm/m varies with country, year and NUTS 2 region, Figure

2 summarizes our main findings in the following way. For each country we focus

on the region where deprivation is highest. This is the region where we expect

the mortality effect of an oop increase to be highest as many people could have

problems paying medical bills. Table 2 presents this region for each country in

our data together with the value of deprivation, the fraction of people with unmet

medical needs due to financial constraints and the country’s value for OOP. As the

table illustrates, the fraction of people indicating that treatment was too expensive

tends to be high when both deprivation and OOP are high.

Substituting these values from the table into the expression for dm/m we get

the numbers in Figure 2. As mentioned, the blue bars give the average effect of

the 500 euro increase in oop on mortality. As we have the posterior distributions

for each of the parameters, we also have the posterior distribution for the mortality

effects per country (taking the uncertainty for all parameters into account). The

black horizontal lines present the 95% intervals around the mean effect.

The first observation is that for Bulgaria, Greece, Hungary and Romania the

95% probability interval is bounded away from zero. For these countries we can

clearly see that an increase in oop negatively affects health and increases mortality.

Why are the effects smaller for the other countries? The effects are basically

zero for the Scandinavian countries, Slovenia and Switzerland. As shown in Table

2, for these countries both deprivation and the fraction of people indicating unmet

medical needs because treatment is too expensive are small. For the Scandinavian

countries in the region with highest deprivation, TooExp is basically zero. It then

follows from the equation for dm/m in the lemma that the effect on mortality is

8Therefore, the observation in Table 1 that in some countries expenditure per head is below

500 euro is not a problem here.
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Table 2: Fraction of people indicating material deprivation, forgoing treatment be-

cause it is too expensive and the country wide fraction of health expenditure paid

out-of-pocket, per NUTS 2 region with highest fraction of material deprivation per

country.

region country deprivation too expensive OOP

BG33 Bulgaria 0.40 0.08 0.43

HR04 Croatia 0.13 0.01 0.11

DK02 Denmark 0.04 0.00 0.14

FI1C Finland 0.03 0.00 0.18

EL63 Greece 0.28 0.07 0.37

HU31 Hungary 0.32 0.02 0.28

IE06 Ireland 0.07 0.02 0.12

LT02 Lithuania 0.12 0.01 0.32

NO01 Norway 0.02 0.00 0.14

RO22 Romania 0.32 0.11 0.21

SK04 Slovakia 0.11 0.01 0.20

SI03 Slovenia 0.05 0.00 0.12

SE22 Sweden 0.02 0.00 0.15

CH01 Switzerland 0.02 0.02 0.26

(close to) zero.

Another reason why the effects are small for some countries is that the underlying

parameters b oop, b interaction are small for these countries. This can be seen

in Table 5 in the appendix. If countries have policies to subsidize healthcare for

poor families, the effect of country wide OOP on these families’ unmet medical needs

is small as they actually pay a lower fraction (than the national average) of their

treatments’ costs oop.

Summarizing, we can identify in our data the effect that an oop increase, raises

the number of people with unmet medical needs due to financial constraints and

hence increases mortality. This is especially the case in regions with high poverty

and high initial OOP. Documenting this effect was the main objective of the paper.

A follow up question is: how big is this effect? In order to interpret the size of

the oop effect, Table 3 presents the number of people dying from a particular cause

per 1000 dead. If we would consider all causes and add them up, the sum of the

second column in Table 3 would equal 1000. The table focuses on causes of death
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with an order of magnitude comparable to the effects in Figure 2. The table is based

on EU wide data in 2017 for ages 35-85.

Note that the comparison of the numbers in the figure with the numbers in

the table is just to get an idea of the order of magnitude. But –strictly speaking–

the causes are not comparable. Nobody dies of an increase in oop the way people

die from pneumonia. Due to an increase in oop, people may have gone without

treatment which can then lead to death from, say, lung cancer. Hence, one should

be careful in comparing the simulation results with the numbers in Table 3. But the

table does provide some context in interpreting the size of the simulated effects.

Table 3: Number of people dying by cause (per 1000 dead) for ages 35-85 (EU

average) using WHO’s icd-10 disease classification.

icd10 per 1000

Malignant neoplasm of breast 23.66

Malignant neoplasm of prostate 16.16

Malignant neoplasm of bladder 9.72

Diabetes mellitus 22.59

Mental and behavioural disorders 26.85

Parkinson disease 9.17

Alzheimer disease 13.08

Pneumonia 19.74

Transport accidents 5.90

The average mortality effect due to a 500 euro increase in oop in Romania is

approximately 33 (per 1000 dead). This exceeds deaths due to each of the causes

in the table. The average effects in Bulgaria and Greece are around 15 and 22

resp. which places them between deaths due to Alzheimer disease and diabetes. In

Hungary the order of magnitude is comparable to deaths due to transport accidents.

However, these are effects aggregated at the regional level (of the regions with

highest poverty levels). Suppose we are willing to assume that the incidence of the

increase in mortality due to the 500 euro increase in oop falls mainly in the group

of people who live in material deprivation. Table 2 shows the relative size of this

group is around 30% for the relevant regions in Greece, Hungary and Romania. To

get these effects at the region level, the effects among this specific group is an order

of magnitude bigger (roughly speaking, multiply by 3).

Finally, there is also the following dynamic effect. As oop increases, 35 year
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olds postpone treatments thereby lowering their health status. Part of this reduced

health leads to higher mortality among 35 year olds but some of these people survive

this year. Next year, they start with lower than average health which can then raise

mortality among 36 year olds. These dynamic feedback effects are captured by the

parameter γ in Lemma 1. As shown in Table 5 in the appendix, the estimated value

for γ is approximately 0.5 (coefficient beta lagged log mortality). As effects

accumulate across age and time, the effect for 85 year olds almost doubles (1 + γ +

... + γ50 ≈ 2). To illustrate, the long run effect of a 500 euro increase in OOP leads

to 66 deaths per 1000 dead for 85 year old Romanians in its poorest region.

One of the advantages of doing a Bayesian analysis is that we can easily show

the uncertainty surrounding our estimated effects. This is illustrated in Figure 7

where we show for eight Romanian regions the probability that the mortality effect

exceeds a certain value. Region RO22 tends to have the biggest effect (reported in

Table 2 and Figure 2), while the effect per 1000 dead is smallest in NUTS 2 region

RO42. We are pretty sure (probability close to 1) that in RO22 the effect is at least

15 per 1000 dead. While in RO42 this probability is less than 40%. In RO42 we

are 80% sure that the effect exceeds 10 per 1000 dead. This is due to the fact that

both deprivation and too expensive are substantially lower in RO42 compared

to RO22.

Figure 7: Uncertainty of the mortality effects in eight NUTS 2 regions in Romania.

Summarizing the discussion on the size of the effect, we find the following. In

countries where poverty and OOP are high, a 500 euro (further) increase in oop leads
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to an increase in mortality (per 1000 dead) that is comparable to causes varying

from Alzheimer disease to diabetes or breast cancer.

6 Robustness

In this section we analyze confounding effects and discuss three different robustness

checks on choice of variables. We explain each robustness check and discuss the

results. More details on and the code for these checks can be found in the online

appendix.

6.1 confounding effects

As discussed in section 2.2 we focus on two mechanisms that may confound our

estimated effect of oop on health and mortality: a shock to healthcare resources and

a health shock.

As explained in section 2.2, a plausible path for the shock to resources goes

via the quality of care. Controlling for healthcare quality closes this backdoor path

(Cinelli, Forney, and Pearl 2022). We use infant mortality to control for the quality of

healthcare. If due to the shock there is a reduction in healthcare resources (e.g. high

quality physicians leave and are replaced by lower quality staff), we expect infant

mortality to reflect this while not being directly related to our outcome variable:

adult mortality.

Note that we cannot use quality measures like number of physicians or MRI

scanners per 100k population. If due to high oop and poverty many people forgo

treatments, these measures will be low and mortality is high. These are mediators

of the mechanism that we are analyzing and controlling for a mediator introduces a

bias instead of resolving one (Cinelli, Forney, and Pearl 2022).

Recall that there is no confounding if reduced resources lead to longer waiting

lists (unmet needs and thus lower health status) with no direct effect of resources on

health (say, through healthcare quality): such a pathway is captured by the model.

Health shocks are partly captured by the term γ ln(ma−1,g,2,t−1/m̄a−1,g). To fur-

ther close the health shock path, we use the fraction of people who state their

(perceived) health is “bad or very bad” to control for health shocks over time. If the

estimated effect of unmet medical needs on mortality is caused by health shocks,

including the self reported health variable should reduce the effect thereby signaling

that our baseline estimates overestimate the true effect.
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Hence we re-estimate our two equations by adding to the TooExp equation the

variable self-perceived health and to the mortality equation we add both infant mor-

tality and self-perceived health. With the newly estimated parameters we calculate

the percentage increase in mortality due to a 500 euro increase in oop using the equa-

tion for dm/m. Then we divide this increase in mortality by the baseline estimated

mortality increase. If this ratio is clearly smaller than one, this is an indication that

the confounding effects are important: including variables to control for healthcare

quality and health shocks reduces the estimated effects considerably.

Figure 8: Mortality effect of OOP in extended equations relative to baseline estimate

As shown in Figure 8, the distribution of the relative effects (across traces and

countries) has a mode (slightly) above one and quite some variation around it. We

know from Figure 2 that there is substantial uncertainty about this effect. This is

reflected in the dispersion of the histogram in Figure 8.

As the mass of the effect in the histogram is at one and above, there are no

strong reasons to believe that the estimated effect in the baseline model is biased

due to shocks to healthcare resources or to health itself. Once we control for such

shocks we find effects that are on average in line with the baseline effects.

6.2 robustness checks

We present three robustness checks in terms of variables. First, we use the at-risk-

of-poverty variable, instead of deprivation as our variable to capture the fraction of

people on low income. Second, we extend our definition of oop costs with expen-

ditures on voluntary health insurance. Third, instead of focusing on the coefficient

βunmet in the mortality equation, we work with TooExp in this equation. The idea
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here is that other reasons for unmet needs (than too expensive) may have bigger

effects on mortality. If this would be the case, the baseline model overestimates the

effect of too expensive (and hence of oop) on mortality. Although effect size for some

countries can change with some of the checks, the overall point that an increase in

oop expenditure raises mortality is robust.

Figure 9: Summary of four robustness checks

We summarize the robustness checks in Figure 9. The figure has the baseline

average effects of Figure 2 on the horizontal axis. For a number of countries these

effects are smaller than 5 (per 1000 dead). In all of the robustness checks, these

effects remain small.

The four countries with baseline effects exceeding five are explicitly named in the

figure. For a given baseline effect, there are three (vertically aligned per country)

robustness effects. Ideally, all three points would lie on the 45-degree line. But,

obviously, there is some variation in the effect size for different specifications. We

know from Figure 2 that there is (considerable) uncertainty about the effect size in

the baseline model. Figure 9 illustrates this uncertainty per country by the dashed

vertical lines indicating the 95% interval in the baseline outcome.

Including voluntary health insurance payments in our oop measure has the small-

est effect on outcomes. The points are very close to the 45-degree line: the effects

are basically the same as with the baseline specification.

Using too expensive instead of unmet in the mortality equation yields smaller

effects for Hungary and Bulgaria, but the differences with the baseline are relatively
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small. The ranking of the effect size across the four countries (with significant

effects) remains the same.

The differences are bigger if we use the at-risk-of-poverty rate instead of depri-

vation. Especially in Bulgaria and Hungary, the effects are substantially smaller

and outside the 95% interval of the baseline effect. As at-risk-of-poverty is a relative

poverty measure, one would expect the effect of this variable on too expensive and

hence on unmet needs to be smaller than with deprivation. Being relatively poor

in a country does not imply that people lack the funds to pay for treatments in the

way deprivation does. This considerably reduces the effect of oop via poverty on

mortality.

Overall the picture is that the baseline result that oop expenditure affects mor-

tality is fairly robust to the use of different variables and different specifications.

7 Discussion and policy implications

The Introduction discusses a recent literature analyzing whether demand-side cost-

sharing reduces expenditure on low value treatments (usually referred to as moral

hazard) or whether it leads patients to postpone or forgo valuable treatments thereby

negatively affecting their health. This literature focuses on US individual level data

and finds that demand-side cost-sharing tends to increase mortality.

We add to this evidence using European data at the (NUTS 2) regional level

by showing that a high share of out-of-pocket expenditures (in total healthcare

expenditures) has a clear effect on unmet medical needs in regions where the fraction

of low income households is high because treatment is too expensive; and hence on

mortality. The size of the mortality effect increases with the initial level of out-of-

pocket expenditure and hence the initial fraction of people indicating they skip or

postpone treatment because it is too expensive.

Healthcare costs keep increasing in most, if not all, developed countries. Demand-

side cost-sharing is a well known instrument to curb the growth in expenditure. This

paper shows that there is a threshold of out-of-pocket expenditure beyond which re-

gions with high poverty levels start to show increased mortality rates. To avoid

this mortality effect, policy makers in countries with high out-of-pocket expenditure

need to search for alternative instruments. Possible alternatives are means tested

cost-sharing or co-payments that are lower for cost-effective treatments. In the lat-

ter case, high value treatments are cheaper than low value care and hence less likely

to be postponed by people on low income.

32



8 Bibliography

Baicker, Katherine, Sendhil Mullainathan, and Joshua Schwartzstein. 2015. “Be-

havioral Hazard in Health Insurance.” The Quarterly Journal of Economics 130 (4).

Oxford University Press (OUP): 1623–67. doi:10.1093/qje/qjv029.

Boone, Jan. 2022. “Replication Data for: European Data on Mortality, Unmet

Medical Needs and Healthcare Expenditure.” DataverseNL. doi:10.34894/AABEBD.

Borgschulte, Mark, and Jacob Vogler. 2020. “Did the Aca Medicaid Expan-

sion Save Lives?” Journal of Health Economics 72 (July). Elsevier BV: 102333.

doi:10.1016/j.jhealeco.2020.102333.

Brot-Goldberg, Zarek C., Amitabh Chandra, Benjamin R. Handel, and Jonathan

T. Kolstad. 2017. “What Does a Deductible Do? the Impact of Cost-Sharing on

Health Care Prices, Quantities, and Spending Dynamics.” The Quarterly Journal of

Economics 132 (3). Oxford University Press (OUP): 1261–1318. doi:10.1093/qje/qjx013.

Chandra, Amitabh, Evan Flack, and Ziad Obermeyer. 2021. “The Health Costs

of Cost-Sharing,” February. National Bureau of Economic Research. doi:10.3386/w28439.

Chernew, Michael E., Mayur R. Shah, Arnold Wegh, Stephen N. Rosenberg,

Iver A. Juster, Allison B. Rosen, Michael C. Sokol, Kristina Yu-Isenberg, and A.

Mark Fendrick. 2008. “Impact of Decreasing Copayments on Medication Adherence

within a Disease Management Environment.” Health Affairs 27 (1). Health Affairs

(Project Hope): 103–12. doi:10.1377/hlthaff.27.1.103.

Chetty, Raj, Michael Stepner, Sarah Abraham, Shelby Lin, Benjamin Scuderi,

Nicholas Turner, Augustin Bergeron, and David Cutler. 2016. “The Association

between Income and Life Expectancy in the United States, 2001-2014.” JAMA 315

(16). American Medical Association (AMA): 1750. doi:10.1001/jama.2016.4226.

Cinelli, Carlos, Andrew Forney, and Judea Pearl. 2022. “A Crash Course in

Good and Bad Controls.” Sociological Methods &Amp; Research nil (nil): 004912412210995.

doi:10.1177/00491241221099552.

Cutler, David M., Adriana Lleras-Muney, and Tom Vogl. 2011. Chapter 7 -

Socioeconomic Status and Health: Dimensions and Mechanisms, in S. Glied and P.

Smith, Editors, Oxford Handbook of Health Economics. Oxford University Press.

Ellis, R.P. 1986. “Rational Behavior in the Presence of Coverage Ceilings and

Deductibles.” RAND Journal of Economics 17 (2): 158–75.

Goldin, Jacob, Ithai Z Lurie, and Janet McCubbin. 2020. “Health Insurance and

Mortality: Experimental Evidence from Taxpayer Outreach.” The Quarterly Journal

of Economics 136 (1). Oxford University Press (OUP): 1–49. doi:10.1093/qje/qjaa029.

33

https://doi.org/10.1093/qje/qjv029
https://doi.org/10.34894/AABEBD
https://doi.org/10.1016/j.jhealeco.2020.102333
https://doi.org/10.1093/qje/qjx013
https://doi.org/10.3386/w28439
https://doi.org/10.1377/hlthaff.27.1.103
https://doi.org/10.1001/jama.2016.4226
https://doi.org/10.1177/00491241221099552
https://doi.org/10.1093/qje/qjaa029


Gross, Tal, Timothy Layton, and Daniel Prinz. 2020. “The Liquidity Sensitivity

of Healthcare Consumption: Evidence from Social Security Payments,” October.

National Bureau of Economic Research. doi:10.3386/w27977.

Health at a Glance 2023: OECD Indicators. 2023. Health at a Glance. OECD.

doi:10.1787/7a7afb35-en.

Hernán, MSC, and JM Robins. 2023. Causal Inference: What If. Boca Raton:

Chapman & Hall/CRC.

Keeler, E. B., J. P. Newhouse, and C. E. Phelps. 1977. “Deductibles and the

Demand for Medical Care Services: The Theory of a Consumer Facing a Variable

Price Schedule under Uncertainty.” Econometrica 45 (3): 641–55.

Mackenbach, Johan P., Irina Stirbu, Albert-Jan R. Roskam, Maartje M. Schaap,

Gwenn Menvielle, Mall Leinsalu, and Anton E. Kunst. 2008. “Socioeconomic In-

equalities in Health in 22 European Countries.” New England Journal of Medicine

358 (23). Massachusetts Medical Society: 2468–81. doi:10.1056/nejmsa0707519.

McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course with

Examples in R and Stan. Second. Chapman and Hall/CRC.

Miller, Sarah, Norman Johnson, and Laura R Wherry. 2021. “Medicaid and

Mortality: New Evidence from Linked Survey and Administrative Data.” The Quar-

terly Journal of Economics, January. Oxford University Press (OUP). doi:10.1093/qje/qjab004.

Newhouse, J.P., and the Insurance Experiment Group. 1993. Free for All?

Lessons from the RAND Health Insurance Experiment. Cambridge, Massachusetts:

Harvard University Press.

Nyman, J.A. 2003. The Theory of Demand for Health Insurance. Stanford

University Press.

OECD. 2021. Health at a Glance 2021. doi:https://doi.org/https://doi.

org/10.1787/ae3016b9-en.

Pearl, Judea. 2009. Causality: Models, Reasoning and Inference. Cambridge

University Press.

Rothschild, M., and J. Stiglitz. 1976. “Equilibrium in Competitive Insurance

Markets: An Essay on the Economics of Imperfect Information.” The Quarterly

Journal of Economics 90 (4): 629–49.

Schokkaert, Erik, and Carine van de Voorde. 2011. “Chapter 15 - User Charges.”

In Oxford Handbook of Health Economics, edited by S. Glied and P. Smith, 329–53.

Oxford University Press.

Semyonov, Moshe, Noah Lewin-Epstein, and Dina Maskileyson. 2013. “Where

Wealth Matters More for Health: The Wealth-Health Gradient in 16 Countries.” So-

34

https://doi.org/10.3386/w27977
https://doi.org/10.1787/7a7afb35-en
https://doi.org/10.1056/nejmsa0707519
https://doi.org/10.1093/qje/qjab004
https://doi.org/https://doi.org/10.1787/ae3016b9-en
https://doi.org/https://doi.org/10.1787/ae3016b9-en


cial Science & Medicine 81 (March). Elsevier BV: 10–17. doi:10.1016/j.socscimed.2013.01.010.

35

https://doi.org/10.1016/j.socscimed.2013.01.010


A Proof of results

Here we continue the model in the main text to specify how health translates into

mortality. An agent’s health is affected by the probability of falling ill and then

getting treatment (or not). Based on the model, we specify that agents’ mortality

in a region is affected by health in the following way, where we define mortality m

as the probability of dying in a period t.

ln(magt) = ln(ηag) + γ ln

(
ma−1,g,t−1

m̄a−1,g

)
− (αt(1− πl) + (1− αt)(1− πh)) (6)

−αtπ
l
∑
i∈I

ζi(δ
l
iσ + (1− δli)σ0)− (1− αt)π

h
∑
i∈I

ζi(δ
h
i σ + (1− δhi )σ0)

where we use the following subscripts: age a, gender g ∈ {f,m}, calendar year t. In
words, log mortality in a region depends on the biology of age and gender, captured

by fixed effects ηag. As people get older, they tend to become less healthy and are

more likely to die. We define this effect as basic biology which is independent of

country or year (in the period that we analyze). Then there are a number of effects

that increase or decrease mortality in a region compared to ηag.

The health of the age-gender cohort in the previous period: if in a NUTS 2 region

there was a shock in t−1 –when this cohort was aged a−1 – that increased mortality

above the average (across years and regions) mortality for this cohort, we interpret

this as a negative health shock. For the people that survived in this cohort in this

region, this health shock can affect their mortality in period t. This is captured by

the coefficient γ.9

People who do not fall ill (α(1− πl) + (1− α)(1− πh)), have the highest health

level (normalized to 1) and hence reduce mortality to the biggest extend compared

to the baseline ηag. People who do fall ill with i and get treatment (απlζiδ
l
i and

(1− α)πhζiδ
h
i ), get health σ ≤ 1 and reduce mortality to a smaller extent. Finally,

people falling ill but forgoing treatment lead to the smallest reduction σ0 in mortality.

Because poor people tend to have lower health status (πl > πh) and more unmet

needs (δli < δhi ), mortality is higher for this group.

As we show in the proof below, we can write the expression for log mortality as:

ln(mag2t) = ln(ηag) + µ2 + γ ln

(
ma−1,2,g,t−1

m̄a−1,g

)
+ βpovertyα2t + βunmetUnmet2t (7)

9Although we think of γ > 0, we allow for γ < 0. The interpretation in the latter case would

be that some people with low health status in cohort a− 1 passed away early, increasing average

health for people remaining in this cohort.
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where we now add subscript 2 to indicate that the variable varies with NUTS 2

region, µ2 denotes NUTS 2 fixed effects, poverty α varies with NUTS 2 region and

calendar year and Unmet denotes the fraction of people indicating unmet medical

needs in a region in year t.

Finally, using equation (2) our model allows us to formalize the fraction of people

that forgo treatment because it is too expensive: fraction of poor people who need

treatment, απl, forgoing treatment for illness i ∈ I because it is too expensive plus

the fraction of rich people, (1− α)πh, forgoing treatment for this reason:

TooExp = απl(
∑
i∈I

ζi

(
G

(
σ0

σ

u(yl)

u(yl − oopi)

)
−G

(σ0

σ

))
(8)

+(1− α)πh(
∑
i∈I

ζi

(
G

(
σ0

σ

u(yh)

u(yh − oopi)

)
−G

(σ0

σ

))
In our data, the variable TooExp varies with NUTS 2 region and year.

The innovation is to view equations (4) and (8) as being parametrized by the

underlying parameters ξ and D which are not directly observed in our data. We

prove below that this leads to an equation where TooExp is a function of OOP and

poverty.

Proof of Lemma 1 First, we show that the probability of treatment, δji =

1 − G(σ0/σu(y
j)/u(yj − oopi)), is increasing in yj and decreasing in oopi. Taking

the derivative

d
(

u(yj)
u(yj−oopi)

)
dyj

=
u′(yj)u(yj − oopi)− u(yj)u′(yj − oopi)

u(yj − oopi)2
< 0

because u is positive and increasing in y, u′ > 0 is decreasing in y and oopi >

0. Hence, the probability of treatment is increasing in income y. Similarly, the

treatment probability falls with oop.

The expression for mortality in a region follows from equation (6) which we can

write as:

ln(magt) = ln(ηag) + γ ln

(
ma−1,g,t−1

m̄a−1,g

)
− 1 + πh(1− σ) + αt(π

l − πh)(1− σ)

+(σ − σ0)(αtπ
l
∑
i∈I

ζi(1− δli) + (1− αt)π
h
∑
i∈I

ζi(1− δhi ))

We capture ηag with a sigmoid of age and gender fixed effects, βag. The NUTS 2

fixed effects capture −1+πh(1−σ) and other reasons why health can differ between

regions. As α denotes poverty, we have

βpoverty = (πl − πh)(1− σ) > 0
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With the expression for Unmet in equation (3), we find that

βunmet = σ − σ0 > 0

Finally, we derive how the fraction of people that forgo treatment because it is

too expensive depends on OOP. We assume that the maximum payment D is small

relative to yearly income yl, yh, which is a reasonable assumption in the European

context. D is small in the following sense: u(yl)/u(yl − D), u′(yl)/u′(yl − D) ≈ 1.

A fortiori this then also holds for oopi < D and yh > yl. This implies that we can

use the following approximation:

OOP =
απlδl + (1− α)πhδh

απlδl + (1− α)πhδh

∑
i∈I ζioopi∑
i∈I ζixi

=

∑
i∈I ζioopi∑
i∈I ζixi

We use the following expansion with respect to D

dTooExp

dOOP
=

dTooExp

dD

(
dOOP

dD

)−1

=
dTooExp

dD

∑
i∈I ζixi∑
i∈ID ζi

(9)

Doing the same with ξ, we find

dTooExp

dOOP
=

dTooExp

dξ

(
dOOP

dξ

)−1

=
dTooExp

dξ

∑
i∈I ζixi∑
i∈Iξ ζixi

Further, equation (8) implies we can approximate the slope of TooExp with

respect to D as:

dTooExp

dD
=

∑
i∈ID

ζi

(
απlgli

σ0

σ

u′(yl)

u(yl)
+ (1− α)πhghi

σ0

σ

u′(yh)

u(yh)

)
where we use our assumption that D is small compared to yj,10 which also simplifies

the notation gji = g(σ0/σ ∗ u(yj)/u(yj −D)) ≈ g(σ0/σ). This allows us to write

dTooExp

dD
=

∑
i∈ID

ζi
σ0

σ
g(
σ0

σ
)

(
απlu

′(yl)

u(yl)
+ (1− α)πhu

′(yh)

u(yh)

)
Doing the same for ξ gives

dTooExp

dξ
=

∑
i∈Iξ

ζixi
σ0

σ
g(
σ0

σ
)

(
απlu

′(yl)

u(yl)
+ (1− α)πhu

′(yh)

u(yh)

)
Combining the two terms from equation (9), we find

dTooExp

dOOP
=

σ0

σ
g(
σ0

σ
)
∑
i∈I

ζixi

[
πhu

′(yh)

u(yh)
+ α

(
πlu

′(yl)

u(yl)
− πhu

′(yh)

u(yh)

)]
10In particular we use u′(yj −D)/u(yj −D) = u′(yj)/u(yj) ∗ (u′(yj −D)/u′(yj)) ∗ (u(yj)/u(yj −

D)) ≈ u′(yj)/u(yj).
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Doing the expansion via coinsurance rate ξ gives the same expression for dTooExp
dOOP

.

Capturing
∑

ζixi with average expenditure per head, x̄, we estimate the following

linear expansion TooExp = b0 +
dTooExp
dOOP

OOP:

TooExp2t = b0,2 + b0,t +OOPctx̄ct (boop,c + binteraction,cα2t) (10)

where

boop,c =
σ0

σ
g(
σ0

σ
)πhu′(yh)/u(yh) > 0

and

binteraction,c =
σ0

σ
g(
σ0

σ
)

(
πlu

′(yl)

u(yl)
− πhu

′(yh)

u(yh)

)
> 0

As it is hard to know what determines the intercept for this linear expansion, we

allow it to vary with NUTS 2 region and calendar year: b0 = b0,2 + b0,t. Finally, to

facilitate the estimation of this equation we assume that TooExp has a logit-normal

distribution. That is, the log-odds of TooExp are normally distributed with the

mean given by equation (10). This ensures that TooExp in the estimation always

lies between 0 and 1.

Figure 10 illustrates this approximation of the relation between (log-odds) TooExp

and OOP for simulated values in the model above. We simulate data for a country

with varying values for ξ and D. Then both OOP and expenditure per head vary

leading to the graph in the left panel of Figure 10 (see web appendix for details). For

this simulated data, the approximation where the (log odds of) fraction of people

forgoing treatment because it is too expensive depends linearly on OOP × Poverty

seems reasonable. As shown in the proof above, we need to multiply OOP and OOP

× Poverty by healthcare expenditure per head because the underlying changing

variable is not the endogenous OOP but the parameters ξ and D. As illustrated in

equation (5), the relation between changes inD and OOP is multiplied by expenditure

per head: dOOP/dD ∝ 1/x̄ct.

The right panel of Figure 10 illustrates this relation for regional data from Roma-

nia. Again a linear approximation looks reasonable. The size of the dots indicates

the level of OOP for that observation. To identify the colors for the different Roma-

nian regions, a color version of the pdf (or the website) is useful.

Since TooExp has a logit-normal distribution, the derivative of the expression in

Lemma 1 with respect to OOPx̄ is given by

dTooExp

d(OOPx̄)
= TooExp(1− TooExp)(boop,c + binteraction,cPoverty2t)

In the simulation we work with a 500 euro increase in oop: d(OOPx̄) = 500. That is,

we multiply the fraction of healthcare expenditure paid oop with average healthcare
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Figure 10: The simulated relation between fraction of people who forgo treatment

because it is too expensive and poverty times the OOP measure for different values of

ξ, D (left panel) and this relation for NUTS 2 regions and years in Romania (right

panel).

expenditure per head. This gives us oop expenditure in euro terms. We assume

that the increase in TooExp translates one-for-one in an increase in Unmet. Hence,

the change in mortality is given by:

dmag2t

mag2t

= βunmetTooExp(1− TooExp)500(boop,c + binteraction,cPoverty2t)

This is the increase in deaths per one dead. In Figure 2 we multiply this expression

by 1000: number of deaths per 1000 dead.

Q.E.D.

B Data

All our variables come from Eurostat. Table 4 shows the dimensions over which our

variables vary: country, NUTS 2, calendar year, age and sex. We also present a

clickable link to the variable on the Eurostat website for ease of reference. The file

./getting_data.org presents the code to download the Eurostat data.11

The variables on poverty, deprivation and access to care (unmet and too ex-

pensive) come from the EU statistics on income and living conditions (EU-SILC)

survey.

11This file can be found in the github repository: https://github.com/janboone/out_of_

pocket_payments_and_health.
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Table 4: Variables and the dimensions over which they vary.

variable country NUTS 2 time age sex reference

population x x x x link

deaths x x x x link

at-risk-of-poverty x x link

material deprivation x x link

fraction too expensive x x link

unmet x x link

out-of-pocket x x link

voluntary x x link

expenditure per head x x link

infant mortality x x link

bad health x x x x link

From the Eurostat Glossary: “The at-risk-of-poverty rate is the share of people

with an equivalised disposable income (after social transfers) below the at-risk-of-

poverty threshold, which is set at 60 % of the national median equivalised disposable

income after social transfers. This indicator does not measure wealth or poverty,

but low income in comparison to other residents in that country, which does not

necessarily imply a low standard of living. The equivalised disposable income is the

total income of a household, after tax and other deductions, that is available for

spending or saving, divided by the number of household members converted into

equalised adults; household members are equalised or made equivalent by weighting

each according to their age, using the so-called modified OECD equivalence scale.”

“Material deprivation refers to a state of economic strain and durables, defined

as the enforced inability (rather than the choice not to do so) to pay unexpected

expenses, afford a one-week annual holiday away from home, a meal involving meat,

chicken or fish every second day, the adequate heating of a dwelling, durable goods

like a washing machine, colour television, telephone or car, being confronted with

payment arrears (mortgage or rent, utility bills, hire purchase instalments or other

loan payments).” Our variable “material deprivation” equals the share of people in

a NUTS 2 region in material deprivation.

Fraction of people with self-reported unmet needs for medical examination is

based on the same survey. In particular, the definition of this item is “Self-reported

unmet needs for health care: Proportion of people in need of health care reporting to
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have experienced delay in getting health care in the previous 12 months for reasons

of financial barriers, long waiting lists, distance or transportation problems.” We

use both the general definition of unmet needs and the specific reason that treatment

was too expensive.

We characterize how generous a health insurance system is using the variable OOP

in our analysis. This variable is derived from data on health care expenditure by

financing scheme. For our OOP measure we focus on voluntary healthcare payment

schemes (voluntary) and household out-of-pocket payment (out-of-pocket). Both

measured as share of total current health expenditure. The baseline specification

uses out-of-pocket only.

Expenditure per head refers to healthcare expenditure per head at the country

level.

Infant mortality measures the number of deaths of infants per 1000 live births

in a year.

Bad health equals the fraction of people indicating that their (self-perceived)

health is either bad or very bad.

C Estimation

This section presents the full model specification (including priors), trace plot and

the table with a summary of the posterior distribution of the relevant coefficients

for the baseline model.

C.1 Bayesian model

The mortality equation is specified as follows:

kag2t ∼ Binomial(nag2t,mag2t)

where kag2t, nag2t denote the number of deaths, population size resp. in an age/gen-

der/region/year category. Mortality is given by

mag2t =
eβag

1 + eβag
e

(
µ2+γ ln

(
ma−1,g,2,t−1

m̄a−1,g

)
+βpovertyPoverty2t+βunmetUnmet2t

)

where we specify the prior as

βag ∼ N(−3.0, 0.3)
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with e−3/(1 + e−3) = 0.05 implying that people above 35 have –on average– still

20 years to live. This is an under-estimation of life expectancy that will be easily

adjusted by the data that we have. Both here and for the TooExp equation, we chose

relatively narrow priors for the fixed effects. The prior for the regional fixed effects

is given by:

µ ∼ Normal(0, 0.3)

We allow γ to be positive or negative with a relatively small standard deviation

(determined in a hierarchical way):

γ ∼ Normal(0, sd prior beta)

Note that γ in the main text is denoted beta lagged log mortality in the code.

The standard deviation of this prior is determined by the following prior distribution

(this is the hierarchy):

sd prior beta ∼ HalfNormal(0.1)

Finally, we know from the theory that the following two parameters are non-negative:

βunmet, βpoverty ∼ HalfNormal(sd prior beta)

In words, sd prior beta captures the extent to which (social) external factors (like

poverty, previous period health etc.) can affect mortality at all, instead of it being

mainly determined by biology (age/gender).

Next, we turn to the equation for TooExp. We estimate TooExp with a logit-

normal distribution.

TooExp2t ∼ LogitNormal(b0,2 + b0,t +OOPctx̄ct (boop,c + binteraction,cPoverty2t) , σ)

where the parameter µ of the Normal distribution of the log-odds of TooExp is given

by the equation in Lemma 1 and the parameter σ has a prior

σ ∼ HalfNormal(1.0)

which allows for a range of values for σ that are positive. For the regional fixed

effects, we have

b0,2 ∼ Normal(−5.0, 0.3)

where the −5.0 is approximately equal to the mean log-odds of TooExp (which equals

−5.17) and we chose a relatively narrow standard deviation for the fixed effects. For

the time fixed effects we have

b0,t ∼ Normal(0, 0.3)
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Since we know that the following two parameters are non-negative, we specify a

half-normal distribution

boop,c, binteraction,c ∼ HalfNormal(sd prior b)

where the prior of sd prior b is given by (hierarchical model):

sd prior b ∼ HalfNormal(0.1)

C.2 missing values in poverty variable

As can be seen in Table 1, the variable poverty has fewer observations than deprivation.

In Bayesian analysis there is a natural way to deal with missing values which is an

improvement on two standard ways of dealing with this: (i) dropping observations

(rows) with missing values (sometimes called complete case analysis) and (ii) inter-

polating the missing values. The former would change our sample when comparing

the results with poverty and with deprivation. Interpolating data, say by re-

placing a missing value with the mean value of the variable makes the estimation

method “too confident” about this value, thereby negatively affecting the quality of

the inference.

We use the following method to deal with missing values (As desribed in McEl-

reath 2020). The uncertainty surrounding the value of a missing observation is taken

into account in the posterior distributions of our parameters. When sampling the

posterior, if we encounter a missing value in a variable, this value is drawn from its

distribution. We work with 4000 samples for the posterior and hence we draw 4000

different values for each missing value. In this way, the uncertainty about the (miss-

ing) value translates into posterior uncertainty of the parameters and predictions.

The web-appendix provides the details on how this is implemented.

C.3 trace plots

Figure 11 gives the trace plots for the parameters that we are interested in. That

is, we leave out the traces for the (age, calendar year and region) fixed effects.

As explained in the main text, we are interested in three features in the plots on

the right. First, the plots are stationary; second, condensed zig-zagging and third,

the four chains cover the same regions of the parameter space. These features are

satisfied for our coefficients of interest.
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Figure 11: Trace plots of the coefficients of interest

C.4 table of coefficients baseline model

Table 5 provides summary statistics for the posteriors of the coefficients we are inter-

ested in. For some countries the hdi 3% lower bound for the b oop or b interaction

equals zero. This is compatible with the OOP effect on mortality being bounded away

from zero as the coefficients can be correlated: say, low b oop going together with

high b interaction leading to an overall strictly positive effect.

Hence, to understand the mortality effects of an increase in oop, we use the

equation for dm/m in Lemma 1 with the posterior distributions substituted in for

all the parameters. This gives us Figure 2.
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Table 5: Summary statictics for estimated coefficients

mean sd hdi 3% hdi 97% ess bulk r hat

beta unmet 0.09 0.02 0.06 0.12 1638.00 1.00

beta lagged log mortality 0.54 0.00 0.53 0.54 2048.00 1.00

beta poverty 0.01 0.01 0.00 0.01 2161.00 1.00

b oop[Bulgaria] 0.51 0.43 0.00 1.32 2180.00 1.00

b oop[Croatia] 1.94 1.49 0.00 4.66 1539.00 1.00

b oop[Denmark] 3.13 0.52 2.14 4.08 701.00 1.00

b oop[Finland] 0.04 0.04 0.00 0.10 2376.00 1.00

b oop[Greece] 20.35 0.65 19.11 21.53 939.00 1.00

b oop[Hungary] 0.12 0.12 0.00 0.32 3139.00 1.00

b oop[Ireland] 6.97 0.84 5.42 8.58 1505.00 1.00

b oop[Lithuania] 3.60 1.67 0.01 6.15 694.00 1.01

b oop[Norway] 0.02 0.02 0.00 0.07 2658.00 1.00

b oop[Romania] 12.67 1.72 9.45 15.83 806.00 1.00

b oop[Slovakia] 2.15 1.18 0.03 4.10 861.00 1.01

b oop[Slovenia] 0.33 0.32 0.00 0.92 2681.00 1.00

b oop[Sweden] 0.87 0.30 0.32 1.45 469.00 1.00

b oop[Switzerland] 0.02 0.02 0.00 0.05 2071.00 1.00

b interaction[Bulgaria] 30.02 2.10 26.40 34.25 1291.00 1.00

b interaction[Croatia] 2.75 2.01 0.00 6.28 2685.00 1.00

b interaction[Denmark] 45.43 3.38 38.50 51.30 1972.00 1.00

b interaction[Finland] 0.70 0.65 0.00 1.92 3853.00 1.00

b interaction[Greece] 3.91 2.40 0.01 8.03 1871.00 1.00

b interaction[Hungary] 65.61 2.73 60.53 70.82 1175.00 1.00

b interaction[Ireland] 3.55 2.29 0.00 7.58 2360.00 1.00

b interaction[Lithuania] 3.01 2.16 0.00 6.87 3090.00 1.00

b interaction[Norway] 32.19 3.09 26.39 37.98 2068.00 1.00

b interaction[Romania] 22.72 3.28 16.50 28.80 2241.00 1.00

b interaction[Slovakia] 1.19 1.08 0.00 3.17 2880.00 1.00

b interaction[Slovenia] 2.27 1.80 0.00 5.46 2425.00 1.00

b interaction[Sweden] 13.32 2.97 7.84 18.96 2914.00 1.00

b interaction[Switzerland] 24.05 1.67 20.77 26.99 2601.00 1.00

sd prior b 3.17 0.08 3.03 3.32 1507.00 1.00

sd prior beta 0.22 0.05 0.14 0.31 3745.00 1.00

σ 0.94 0.00 0.94 0.95 3649.00 1.00
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